ADDENDUM No. 2

DATE:	October 19, 2018
PROJECT:	City of St. Charles – 2018 Dunham Road Sanitary Force Main Replacement
PROJECT NUMBER:	STC-111
OWNER:	City of St. Charles, Illinois
ENGINEER:	Trotter and Associates, Inc. 40W201 Wasco Road, Suite D St. Charles, Illinois 60175
TO:	Prospective Bidders

The Addendum forms a part of the Contract Documents and modifies the Bidding Documents dated September 21st, 2018, with amendments and additions noted below.

Return the provided Receipt of Addendum Acknowledgement to Trotter and Associates, Inc. and acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may disqualify the Bidder.

This Addendum consists of two (2) pages, plus attachments consisting of thirty-four (34) pages.

General Comments

Pre-qualification for proof of ownership of 100-Ton drilling rig has been modified. Proof of ownership or lease of a rig with at least 100,000 lbs. pulling strength will satisfy this requirement.

The completed LPC-663 form and support documentation for the project has been attached to this Addendum.

Modifications to Project Specifications

1. Section 00 42 13 – PROPOSAL FORM

Section 00 42 13 is hereby modified:

Alternate Bid Schedule: Quantities pay items 1 and 2 changed to 604 SY.

Modifications to Project Drawings

None made this Addendum.

ALL ITEMS IN CONFLICT WITH THIS ADDENDUM ARE HEREBY DELETED.

THIS ADDENDUM IS HEREBY MADE PART OF THE CONTRACT DOCUMENTS AND SHALL BE NOTED ON THE PROPOSAL.

END ADDENDUM No. 1

Attachments:	Completed LPC-663 Form & Supporting Documents	21 pages
	Section 00 42 13 – Proposal Form	12 pages
	Addendum No. 2 Acknowledgement	1 page

Illinois Environmental Protection Agency

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

Uncontaminated Soil Certification by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663 Revised in accordance with 35 III. Adm. Code 1100. as

amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have guestions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

IL 532-2922

(Describe the location of the source of the uncontaminated soil)

Project Name: Sanitary Sewer Replace	ement	Office Pho	one Number, if av	/ailable:		
Physical Site Location (address, incldud	•	•				
Dunham Road East ROW -Fighting Sai	ints Lane to Mosely La	ane				
City: <u>St. Charles</u> S	State: IL	Zip Code: <u>60174</u>	L			
County: Kane		Township: St. Ch	arles			
Lat/Long of approximate center of site in	n decimal degrees (DI	D.ddddd) to five dec	imal places (e.g.,	40.67890	, -90.123	45):
Latitude: <u>41.930756</u> Longitu	ude: - <u>88.282319</u>					
(Decimal Degrees)	(-Decimal Deg	rees)				
Identify how the lat/long data were de	etermined:					
🔲 GPS 🛛 🔀 Map Interpolation	Photo Interpolatio	on 🗌 Survey	Other			
IEPA Site Number(s), if assigned:	BOL:	BOW:		BOA:		
II. Owner/Operator Information	o for Source Site					
Site Owner			Si	te Operato	or	
Name: City of St. Charles		Name:	City of St. Charle	es		
Street Address: 2 E. Main Street		Street Address:	2 E. Main Street			
PO Box:		PO Box:				
City: <u>St. Charles</u>	State: IL	City:	St. Charles		_ State:	IL
Zip Code: <u>60174</u> Phon	ne: (630) 377-4400	Zip Code:	60174	Phone:	(630) 377	7-4400
Contact: Peter Suhr - Public Wo	rks Director	Contact:	Peter Suhr - Put	olic Works	Director	
Email, if available: psuhr@stcharlesil.go)V	Email, if availab	le: psuhr@stchar	rlesil.gov		

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms LPC 663 Rev. 8/2012 Management Center.

Project Name: Sanitary Sewer Replacement

Latitude: <u>41.930756</u> Longitude: -88.282319

Uncontaminated Site Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 Ill. Adm. Code 1100.610(a)]:

SEECO performed 9 soil borings and chemical laboratory test was performed on one sample (B-3, 4-6) that was representative of site. Materials certified herewith as CCDD material must be free of rebar, garbage, etc. and any said materials must be segregated from CCDD materials and disposed of in other legal means.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201(g), 1100.205(a), 1100.610]:

SEECO screened for volatile organics using a Photo Ionization Detector which indicates the presence of volatile organics in parts per million (ppm). No readings indicated the presence of volatile organics associated with contamination at the locations tested. Laboratory analysis were within the MAC range set forth by the IEPA and soil pH range is acceptable (results attached).

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I. Matthew Boladz, P.E. (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Duvan Drive		
Park State:	IL Zip Code: 60477	
429-1666		11111111111111111111111111111111111111
		UP PESSION A
	10/18/18	MATTHEW J. BOLADZ
	Date:	P.E. or L.P.G. Seal
	429-1666 er or st Signature:	429-1666 429-1666 Lo/10/18 Per or Date: st Signature:

						BORIN						
CLIEN	T	Ci	ity (of S	St. Charles		PROJE Proje	rop	osed Sanit	ary Force	e Main Inst	tallation
ENGI	NEE						Proje	TION	am Dood	St Char	les, Illinois	
			rott	er	& Associates, Inc.			Dum	am Kuau,		ies, minois	
		63	(%)	LOG	BORING NUMBER	B-1		Unconfin	ed Compressi	ve Strength,	Tons/Ft. ²	
H LON	NO.	TYPE	REC. (SURFACE ELEVATION	ON (M.S.L.) 771.00	PID	1	2 3	3 4	5	- S
DEPTH ELEVATION	SAMPLE	SAMPLER	I	GRAPHIC	STATION	OFFSET from CL	ppm	PL ▲		c ←────		REMARKS
EI	SA	SAM	SAMPLE	SOIL	DESCRIPTION	OF MATERIALS		STD "N"	PENETRATI		S PER FT.	<u></u> сс
		<u> </u>	SI	so	(LABORATORY 10" FILL: CLAY TOPS	CLASSIFICATION)		10	20 3	0 40	50	
	1	HA										_
	1	ss	33		FILL: SILTY CLAY, Da Brown, Trace Sand, Stif	ark Brown and Some f, Moist (CL)	0	6 3	×			
2.5-	-	НА										
	-				SILTY CLAY Brown a	nd Gray, Trace Sand, Little			-A			4
	2	SS	50		to Gravel Gravel, Stiff to	Medium, Moist (CL)	0		$\langle $			
5.0-		HA										
7.5-	3	SS	67				0	663				
	1	HA			SILTY CLAY, Brown, 7	Frace Sand and Gravel,			+			_
	4	SS	44		Very Stiff, Moist	(CL)	0	₿×				
10.0-				Ø	E-1-CD-1 O 10.0 E							
-					End of Boring @ 10.0 Fe Note:	cet.						
-					1) All the soil samples w	ere screened with a						
12.5-						oto-ionization device (PID)						
-					2)This boring was drilled							
15.0-					conjunction with a 35-pc inches onto a split spoon blow counts converted to	unless steel hand auger in bund hammer dropped 30 sampler with the resulting an equivalent SPT ("N")						
-					value utilizing the potent							
-					 This boring was offset East from the original loc utilities - Driller's Observ 	ation due to underground						
17.5-												
-												
-												
_							 ● C:	alibrated Peneti	rometer Uncor		ression	_!
		,	Wate	r Le	evel Observations	SEE			Boring Start		3/16/18	
W.L.						Consulta		nc.	Boring Com	pleted	3/16/18	
W.L.	DR	RY V	WS/	W	D DRY ACR	7350 Duvan Drive, Ti	nley Park,	IL 60477	Driller	EN	RigHA/ P	
W.L.			-			Approved CWG	Job No.	11879G	Drawn By	MB	Sheet	1 of 1

						I	BORIN	G LOC	3				
CLIEN	T	Ci	ity d	of S	St. Charles			PROJEC	Ргор	osed Sanita	ry Force	Main Inst	allation
ENGI	VEEI	R Tı	rott	er	& Associates, Inc.		.,	LOCAT	TON	am Road, S	st. Charl	es, Illinois	
		ы	(%)	LOG	BORING NUMBER	B-	2		Unconfin	ed Compressive	e Strength,	Tons/Ft. ²	
TH TION	NO.	A TYPE		GRAPHIC	SURFACE ELEVATION	ON (M.S.L.)	772.75	PID	1	<u>2</u> <u>3</u> 	4	5	RKS
DEPTH ELEVATION	SAMPLE	SAMPLER	SAMPLE REC.	GRAI	STATION	OFFSET fro	om CL	ppm		мс ————————————————————————————————————			REMARKS
щ	ŝ	SA	SAME	SOIL	DESCRIPTION (LABORATORY				STD "N" 10	PENETRATIO ☆ 20 30	N BLOWS 	50 SPER FT.	
		нs			12" FILL: CLAY TOPS	OIL, Dark Brow	'n						
-	1	SS	44		FILL: SILTY CLAY, D Brown, Trace Sand, Stif		Some (CL)	0		ex l			
2.5-		HS											
-	2	SS	67		SILTY CLAY, Brown a Medium to Stiff to Medi	nd Gray, Trace a um, Moist	Sand, (CL)	0	80				
5.0- -		нs											
- - 7.5-	3	SS	39					0	8 😔				AČR
-		нs											₩D
-	4	SS	61					0	8 0 ×				
10.0- - - -					End of Boring @ 10.0 F Note: 1) All the soil samples w MiniRae 3000 OVM pho and utilizing olfactory se odors were observed in t	ere screened with too-ionization de	vice (PID)						
12.5~ - - - -					readings 0.0 PPM.								
<u>لـ</u>	/								librated Penetr	rometer Unconf			.!
W.L.			wate	r L	evel Observations	Co	SEE nsulta		IC.	Boring Starter Boring Comp		<u>3/16/18</u> <u>3/16/18</u>	
W.L.		8' '	WD)	6.5' ACR		an Drive, Tu	nley Park, I	IL 60477	Driller	EN	Rig	D-50
W.L.							CWG	Job No.	11879G	Drawn By	MB	Sheet	<u>1 of 1</u>

						В	ORIN	G LOG					
CLIEN			ity	of S	St. Charles			PROJECT Project	Prop	osed Sanit:	ary Force	e Main Inst	allation
ENGI	NEEI	R Tı	roti	ter	& Associates, Inc.			LOCATION	^N Dunl	nam Road,	St. Charl	les, Illinois	
		E	(8)	LOG	BORING NUMBER	B-3			Unconfi	ned Compressi	ve Strength,	Tons/Ft. ²	
TH TION	E NO	R TYPE	REC.	GRAPHIC	SURFACE ELEVATION	ON (M.S.L.)	768.00	PID	1	2 3	4	5	RKS
DEPTH ELEVATION	SAMPLE	SAMPLER			STATION	OFFSET from		ppm			<u> </u>		REMARKS
	S	SA	SAMPLE	SOIL	(LABORATORY				10	20 30	}	50 <u>50</u>	
-	-	HA			12" FILL: CLAY TOPS	OIL, Dark Brown							
2.5-	1	SS	44		FILL: SILTY CLAY, Da Brown and Black, Trace	ark Brown and Son Sand, Stiff, Moist	me t (CL)	0	8 8				
2.5-		HA											
5.0-	2	SS	61		SILTY CLAY, Brown a Medium to Very Stiff, M		nd, (CL)	0	80	*			Environ. Sample
а -		HA							X				
- - 7.5-	3	SS	54					0	EBK	•			
		HA											
- 10.0-	4	ss	33					0	88	•			
10.0					End of Boring @ 10.0 Fe Note:	et.							
12.5-					 All the soil samples w MiniRae 3000 OVM pho and utilizing olfactory se odors were observed in th readings 0.0 PPM. This boring was drilled 	oto-ionization devi nses and no petrole nis boring with all	ce (PID) eum PID						
- 15.0- -					diameter open tubular sta conjunction with a 35-po inches onto a split spoon blow counts converted to value utilizing the potenti	inless steel hand a und hammer drop sampler with the an equivalent SP	nuger in ped 30 resulting Γ ("N")						
17.5-					3) Sample 2 was taken as environmental chemically SVOCs, 8 Total RCRA N by an indpendant environ	/ tested for VOCs, Metals, Mercury, a	nd pH						
-													
			Nate	r I e	evel Observations		OFF	· · · · · ·	ated Penet	Boring Starte			
W.L.						Con	SEE Isulta	CO nts, Inc.		Boring Com		3/16/18 3/16/18	
W.L.	DR	YV	VS/	W]	D DRY ACR	7350 Duvan	Drive, Ti	nley Park, IL 6		Driller Drawn By	EN MB	RigHA/ Po Sheet	ort. SPT 1 of 1

							BORIN	G LO	G					
CLIEN	νT	Ci	ity o	of S	St. Charles			PROJ		Propo	osed Sanita	ry Force	Main Insta	llation
ENGI		b						Proj						
ENGI	NEE		rott	er	& Associates, Inc.				TION	Dunh	am Road, S	t. Charl	es, Illinois	
	1		-	g	BORING NUMBER			<u>ור</u>	U	nconfin	ed Compressive	Strength '	Tons/Ft 2	
z		TYPE	%	LOG			-4			1	$\frac{2}{2}$			
DEPTH ELEVATION	NO NO	1	REC.	GRAPHIC	SURFACE ELEVATIO		766.00	PID			Ĩ	4	5	REMARKS
DEI LEV7	SAMPLE	SAMPLER		GRA	STATION	OFFSET fi	rom CL	ppm		PL ▲──				KEMP
ធ	SP	SAN	SAMPLE	SOIL	DESCRIPTION			1	S1	TD "N"	PENETRATIO	N BLOWS	PER FT.	Щ
			S	š	(LABORATORY 12" FILL: CLAY TOPS				-	10	20 30	40	50	
	{	HS			12 TILL CLATIONS	JIL, Dark Bio	wii							
	-				FILL: SILTY CLAY, Br	own, Grav, an	d Some			+				
	1	SS	61		Black, Trace Sand, Very	Stiff, Moist	(CL)					1		
		33	01				(01)	0		B				
2.5-	\vdash													
		HS												
					FILL: SILTY CLAY, Da	rk Brown and	Brown,			+/	+ +	_		_
	2	SS	78		Trace Sand, Very Stiff, N	Aoist	(CL)	0		H	$\mathbf{\Theta}$			
	1						()			۲°	U T			
5.0-										A				
		HS			SILTY CLAY, Brown an	nd Gray, Trace	e Sand and		- /		+ ++			
					Gravel, Medium to Stiff,	Moist	(CL)		/					
	3	SS	50				()	0	8					
-									η η	Ý				
7.5-									$ \rangle$					
-		HS								X	X I			
-										\mathbb{N}				
-	4	SS	67					0						
-				0										
10.0-					End of Boring @ 10.0 Fe	et.				+				
-					Note:									
-					1) All the soil samples we	ere screened w	vith a							
-					MiniRae 3000 OVM pho and utilizing olfactory set	to-ionization on the to-ionization of to-i	ievice (PID) troleum							
-					odors were observed in the readings 0.0 PPM.									
12.5-														
-														
-	1													
-														
-	1													
				'				0	Calibrated	d Penetr	ometer Unconfi	ined Comp	ression	
		1	Wate	r Le	evel Observations		SEE	CO			Boring Started	1	3/16/18	
W.L.							onsulta	ints, l			Boring Comp	leted	3/16/18	
W.L.	DR	RY	NS/	W	D DRY ACR		uvan Drive, T				Driller	EN	Rig	D-50
W.L.						Approved	CWG	Job No.	118	379G	Drawn By	MB	Sheet	1 of 1

						BORIN	G LOG	3				
CLIEN			ty o	of S	St. Charles		PROJEC Projec	ггор	oosed Sanitar	y Force	e Main Insta	llation
ENGI	NEEF	۲r ۲۲	ott	er	& Associates, Inc.		LOCAT	ION Dun	ham Road, St	. Char	les, Illinois	
		PE	(%)	LOG	BORING NUMBER	B-5		Unconfi	ned Compressive	Strength,	Tons/Ft. ²	
PTH ATION	E NO.	R TYPE	REC.	GRAPHIC	SURFACE ELEVATIO	764.00	PID	1 PL	2 3	4	5	RKS
DEPTH ELEVATION	SAMPLE	SAMPLER	SAMPLE 1	L GRA	STATION	OFFSET from CL	ppm	A —	MC — — — — — — — — — — — — — — — — — — —	BLOW	LL	REMARKS
		S	SAN	SOIL		OF MATERIALS CLASSIFICATION)		10	20 30	40	50	
		HS			12 FILL CLAT TOPS	JIL, Dark Brown						
	1	ss	56	[11] Y. M. M. L. M.	FILL: SILTY CLAY, Bro Dark Brown, Trace Sand	own, Gray, and Some and Gravel, Stiff, Moist (CL)	0	B≫€	•			
-		нs			FILL: SILTY CLAY, Da Trace Sand, Very Stiff, M	rk Brown and Brown,						
-	2A 2B	SS	78		SILTY CLAY, Brown an	(CL) ad Gray, Trace Sand, Very	0	8	• × • • ×	_		
5.0-		нѕ			Stiff to Stiff, Moist	(CL)						
-	3	SS	50				0	8	*			¥ AČR
7.5-		HS										\ ₩D
-	4	SS	39				0	88	*			
10.0-					and utilizing olfactory ser odors were observed in th	ere screened with a to-ionization device (PID) ises and no petroleum						
12.5					readings 0.0 PPM. 2) This boring was offset from original boring locat utilities- Driller's Observa	approximately 5 feet East ion due to underground tion.						
		!					• Ca	librated Pene	trometer Unconfin	ed Comp	ression	
N.L.		1	Vate	r Le	evel Observations	SEE Consulta		IC.	Boring Started Boring Comple	ted	3/16/18 3/16/18	
W.L.		8' '	WD)	7' ACR	7350 Duvan Drive, T	inley Park, I		Driller	EN	Rig	D-50
V.L.						Approved CWG	Job No.	11879G	Drawn By	MB	Sheet	1 of 1

						I	BORIN)G					
CLIEN	T	C	ity (of S	St. Charles			PRO.	J	Prope	osed Sani	tary Force	Main Ins	stallation
ENGI	NEE	R						Pro LOC	ATION					
		T	rott	er	& Associates, Inc.					Dunh	am Road	, St. Charl	les, Illinoi	S
			(%)	LOG	BORING NUMBER	B-	6		Ur	confin	ed Compress	ive Strength,	Tons/Ft. ²	
NO	NO.	TYPE		1 1	SURFACE ELEVATIO			-		1	2(3 <u>4</u>	5	
DEPTH ELEVATION	1		REC.	GRAPHIC			762.00	PID		ו יב	1	 1C	 LL	REMARKS
DE	SAMPLE	SAMPLER	Ë		STATION	OFFSET fro	om CL	ppm		A	>	×		REM
щ	S S	SA	SAMPLE	SOIL	DESCRIPTION (LABORATORY						{	ION BLOWS		
				N.	13" CLAY TOPSOIL, D					0	20 3	30 40	50	
		HS												
					SILTY CLAY, Brown an	nd Gray, Trace	Sand, Stiff,							
	1	ss	72		Moist		(CL)	0	a a	•	X			
2.5-														
		HS												
	1		02											
	2	SS	83					0		EB (8 ×			
5.0-														
-		HS									Å			
-					SILTY SAND, Brown, 7 Dense, Moist	Frace Gravel, M	edium			$\top \forall$	/			-
	3	SS	56		Dense, Moist		(SM)	0		Xβ				
7.5-														
-		HS			SH TY CLAY Design I		P				_			_
-					SILTY CLAY, Brown, I Gravel, Very Stiff, Moist									
-	4	SS	67				(CL)							
-	4	55	0/					0		8				
10.0-					End of Boring @ 10.0 Fe	eet.	<u>.</u>							-
-					Note:									
-					1) All the soil samples w									
-					MiniRae 3000 OVM pho and utilizing olfactory set odors were observed in th	nses and no pet	roleum							
12.5-					readings 0.0 PPM.	ins boring with a								
-					2) This boring was offset East from original boring	approximately	23 feet							
+					underground utilities- Dr	iller's Observati	on.						25	
-														
-														
				<u> </u>					Calibrated	Penetr	ometer Unco	onfined Comp		_!
		,	Wate	r Le	evel Observations		SEE	CO			Boring Star	rted	3/16/10	5
W.L.							onsulta	ints,			Boring Cor	npleted	3/16/18	
W.L.	DR	RY	NS/	W.	D DRY ACR	7350 Duv Approved	van Drive, T	inley Pari Job No.			Driller	EN	Rig	D-50
W.L.				-		Approved	CWG	300 110.	118	/9G	Drawn By	MB	Sheet	1 of 1

						BOR	RING L	.OG					
CLIEN	T	Ci	ity o	fS	t. Charles			ROJECT roject	rropo	sed Sani	tary Forc	e Main I	Installation
ENGI	VEEI	۲r ۲r	otte	er d	& Associates, Inc.			CATIO	227	am Road	, St. Cha	rles, Illin	ois
		ы	(%)	ЦŐ	BORING NUMBER	B-7			Unconfine	ed Compress	ive Strength	, Tons/Ft.	2
rh FION	NO.	TYPE			SURFACE ELEVATIO	N (M.S.L.) 758.	00 P	Б	1	2	3 4	5	SX
DEPTH ELEVATION	SAMPLE NO.	SAMPLER	SAMPLE REC.	GRAPHIC	STATION	OFFSET from CL	PI	m	PL ▲───		ис ×		REMARKS
ы	SF	SAM	SAMP	SOIL		OF MATERIALS CLASSIFICATION)			STD "N" 10	{	ION BLOW 3		
		HS			15" CLAY TOPSOIL, Da Moist		OL)						
2.5-	1A 1B	SS	61		SILTY CLAY, Brown an to Very Stiff, Moist	•)	8		×		
-		нs											
5.0-	2	SS	72)	B (
		HS											
7.5-	3	SS	89						EX	•			
-		HS											
- - 10.0-	4	SS	56				0)	×	3	•		
-					End of Boring @ 10.0 Fee Note: 1) All the soil samples we MiniRae 3000 OVM phot and utilizing olfactory sen odors were observed in th readings 0.0 PPM.	re screened with a to-ionization device (P ises and no petroleum	D)						
12.5- - - - -													
			Water	Le	vel Observations	e	EECC	-	brated Penetro	Boring Sta		pression 3/16	/18
W.L.	DP	X 7 X	VC	11.77		Consu	iltants	s, Inc		Boring Con Driller	-	3/16	/18
W.L. W.L.	DR		NS/	vv 1	D DRY ACR	7350 Duvan Driv Approved CW			. 60477 11879G	Driller Drawn By	EN MB		D-50 1 of 1

						BORIN	G LOG					
CLIEN			ty of	St. Charles			PROJECT Project		osed Sanitar	y Force	Main Inst	allation
ENGI	NEEI	R Tr	otte	r & Associates, Inc.			LOCATIO	^N Dunh	am Road, S	t. Charl	es, Illinois	
		Ē	(%)	BORING NUMBER	B	-8		Unconfin	ed Compressive	Strength,	Fons/Ft. ²	
TH	NO.	R TYPE	LE REC.	SURFACE ELEVATI	ON (M.S.L.)	757.00	PID	1	2 3	4	5	RKS
DEPTH ELEVATION	SAMPLE	SAMPLER	SAMPLE R	STATION	OFFSET fr	om CL	ppm					REMARKS
I	s	SA	SAMPI			FION)		10	PENETRATIO 20 30	40	50	
		нѕ		14" CLAY TOPSOIL, 1	Dark Brown and	l Black						
2.5-	1	SS	72	SILTY CLAY, Brown a Trace Dark Gray Organ			0	€ 0	X			-
		HS										
5.0-	2	SS	83				0	Be	*			
		HS										
7.5-	3	SS	89	SILTY CLAY, Brown a Gravel, Very Stiff, Mois	and Gray, Trace st	Sand and (CL)	0	83	*•			
-		нs										Ĩ
- 10.0	4	SS	61				0	Esk	Θ			
10.0 - - - 12.5-				End of Boring @ 10.0 F Note: 1) All the soil samples w MiniRae 3000 OVM ph and utilizing olfactory so odors were observed in readings 0.0 PPM.	vere screened with the screene	evice (PID) roleum						
				2) This boring was offse East from original borin underground utilities- D	g location due to	o						
			Nator	Level Observations				rated Peneti	rometer Unconfi Boring Started			
W.L.							nts, Inc		Boring Compl		3/16/18 3/16/18	
W.L.	DR	Y V	VS/V	VD DRY ACR	7350 Du	van Drive, Ti	nley Park, IL (60477	Driller	EN	Rig	D-50

						BOF	RIN	g log						
CLIEN	JT	Ci	ity o	of S	St. Charles			PROJECT Project	rop	osed Sanita	ry Force	e Main Insta	allation	
ENGI	VEEI	² Tr	ott	er	& Associates, Inc.			LOCATIC	DN Dunh	am Road, S	t. Charl	les, Illinois	96	
		E	(%)	гоg	BORING NUMBER	B- 9			Unconfin	ed Compressive	e Strength,	h, Tons/Ft. ²		
TH	E NO.	R TYPE	EC.	GRAPHIC	SURFACE ELEVATIO	N (M.S.L.) 756.	50	PID	1	2 3	4	5	RKS	
DEPTH ELEVATION	SAMPLE	SAMPLER	SAMPLE REC.	GRA	STATION	OFFSET from CL		ppm		MC × PENETRATIO			REMARKS	
	S	SA	SAMI	SOIL	(LABORATORY	OF MATERIALS CLASSIFICATION)			10 SID N	1000000000000000000000000000000000000	40	50 <u>50</u>		
		HS			12" FILL: SAND AND (GRAVEL, Dark Brown	1							
2.5-	1	ss	67		FILL: SILTY CLAY, Da Trace Sand and Gravel, N	Aedium, Moist	(CL)	0	89	X			-	
2.5-		нs		神神神神										
-	2	SS	89		SILTY CLAY, Brown ar Gravel, Stiff to Very Stiff	f, Moist	nd (CL)	0	8 8					
5.0- -		HS												
- - 7.5-	3	SS	78					0	X	3				
-		HS												
-	4	ss	42					0	8×	Θ				
10.0- - -					End of Boring @ 10.0 Fe Note: 1) All the soil samples we MiniRae 3000 OVM pho	ere screened with a to-ionization device (P	D)							
12.5-		-			and utilizing olfactory ser odors were observed in the readings 0.0 PPM.	uses and no petroleum is boring with all PID								
-								Calil		rometer Unconfi	ined Comp	ression		
		1	Wate	r Le	evel Observations	S	EE			Boring Started	1	3/15/18		
W.L. W.L.	DB	yv	NS/	w	D DRY ACR		ilta	nts, Inc		Boring Comp Driller	leted EN	3/15/18 Rig	D 50	
W.L.	171			**1		Approved CW		Job No.	11879G	Drawn By	<u>EN</u> MB	Sheet	D-50 1 of 1	

Environmental Laboratories, Inc. IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

March 30, 2018

Mr. Don Cassier SEECO ENVIRONMENTAL SERVICES 7350 Duvan Drive Tinley Park, IL 60477

Project ID: 11879 First Environmental File ID: 18-1461 Date Received: March 23, 2018

Dear Mr. Don Cassier:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number 004324: effective 02/27/2018 through 02/28/2019.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200.

Sincerely,

E alghow

Neal Cleghorn **Project Manager**

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

SEECO ENVIRONMENTAL SERVICES

Lab File ID: 18-1461

Project ID: 11879

Date Received: March 23, 2018

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The results in this report apply to the samples in the following table:

Laboratory Sample ID 18-1461-001	Client Sample Identifier	Date/Time Collected			
18-1461-001	B-3 S-2	03/16/18			

Sample Batch Comments:

Method 5035 vials for soil VOCs were not received. Samples preserved in lab.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

SEECO ENVIRONMENTAL SERVICES

Lab File ID: 18-1461

Project ID: 11879

Date Received: March 23, 2018

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The following is a definition of flags that may be used in this report:

Flag	Description	Flag	Description
Α	Method holding time is 15 minutes from collection. Lab an	alysis	was performed as soon as possible.
В	Analyte was found in the method blank.	L	LCS recovery outside control limits.
<	Analyte not detected at or above the reporting limit.	M	MS recovery outside control limits; LCS acceptable.
С	Sample received in an improper container for this test.	Р	Chemical preservation pH adjusted in lab.
D	Surrogates diluted out; recovery not available.	Q	Result was determined by a GC/MS database search.
E	Estimated result; concentration exceeds calibration range.	S	Analysis was subcontracted to another laboratory.
G	Surrogate recovery outside control limits.	Т	Result is less than three times the MDL value.
H	Analysis or extraction holding time exceeded.	W	Reporting limit elevated due to sample matrix.
J	Estimated result; concentration is less than routine RL but greater than MDL.	N	Analyte is not part of our NELAC accreditation or accreditation may not be available for this parameter.
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	ND	Analyte was not detected using a library search routine; No calibration standard was analyzed.

IL ELAP / NELAC Accreditation # 100292

		Analytical H	Report			
Client:	SEECO ENVIRONI	MENTAL SERVICES		Date C	Collected:	03/16/18
Project ID:	11879			Time	Collected:	
Sample ID:	B-3 S-2			Date F	Received:	03/23/18
Sample No:	18-1461-001				Reported:	03/30/18
-	orted on a dry weight	basis.				00100110
Analyte	······		Result	R.L.	Units	Flags
Solids, Total	02/02/19 14 40	Method: 2540B				
Total Solids	03/23/18 14:48		79.45		%	
					70	
Analysis Date:	nic Compounds 03/29/18	Method: 5035A/82	60B			
Acetone			< 200	200	ug/kg	
Benzene			< 5.0	5.0	ug/kg	
Bromodichloro	omethane		< 5.0	5.0	ug/kg	
Bromoform			< 5.0	5.0	ug/kg	
Bromomethane	•		< 10.0	10.0	ug/kg	
2-Butanone (M	IEK)		< 100	100	ug/kg	
Carbon disulfic	le		< 5.0	5.0	ug/kg	
Carbon tetrach	loride		< 5.0	5.0	ug/kg	
Chlorobenzene	:		< 5.0	5.0	ug/kg	
Chlorodibromo	omethane		< 5.0	5.0	ug/kg	
Chloroethane			< 10.0	10.0	ug/kg	
Chloroform			< 5.0	5.0	ug/kg	
Chloromethane	•		< 10.0	10.0	ug/kg	
1,1-Dichloroeth	hane		< 5.0	5.0	ug/kg	
1,2-Dichloroeth	hane		< 5.0	5.0	ug/kg	
1,1-Dichloroeth	hene		< 5.0	5.0	ug/kg	
cis-1,2-Dichlor	oethene		< 5.0	5.0	ug/kg	
trans-1,2-Dichl	oroethene		< 5.0	5.0	ug/kg	
1,2-Dichloropro	opane		< 5.0	5.0	ug/kg	
cis-1,3-Dichlor	•		< 4.0	4.0	ug/kg	
trans-1,3-Dichl	oropropene		< 4.0	4.0	ug/kg	
Ethylbenzene			< 5.0	5.0	ug/kg	
2-Hexanone			< 10.0	10.0	ug/kg	
	tylether (MTBE)		< 5.0	5.0	ug/kg	
	ntanone (MIBK)		< 10.0	10.0	ug/kg	
Methylene chlo			< 20.0	20.0	ug/kg	
Styrene			< 5.0	5.0	ug/kg	
1,1,2,2-Tetrach	loroethane		< 5.0	5.0	ug/kg	
Tetrachloroethe			< 5.0	5.0	ug/kg	
Toluene			< 5.0	5.0	ug/kg	
1,1,1-Trichloro	ethane		< 5.0	5.0	ug/kg	
1,1,2-Trichloro			< 5.0	5.0	ug/kg	
1.1.4-11000000						

IL ELAP / NELAC Accreditation # 100292

		Analytical 1	Report			
Client:	SEECO ENVIRON	MENTAL SERVICES	•	Date C	Collected:	03/16/18
Project ID:	11879				Collected:	
Sample ID:	B-3 S-2				Received:	03/23/18
Sample No:	18-1461-001				Reported:	03/30/18
-	orted on a dry weight	t hasis		Date	cepoi teu.	03/30/10
Analyte			Result	R.L.	Units	Flags
Volatile Organ Analysis Date:	nic Compounds	Method: 5035A/82	260B			
Vinyl acetate	05/27/10		< 10.0	10.0	ua/ka	
Vinyl chloride			< 10.0		ug/kg	
Xylene, Total			< 10.0 < 5.0	10.0	ug/kg	
			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date:		Method: 8270C		Preparation Preparation D	Method 3 Date: 03/27/	540C 18
Acenaphthene			< 330	330	ug/kg	
Acenaphthylen	e		< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthra	acene		< 330	330	ug/kg	
Benzo(a)pyren	e		< 90	90	ug/kg	
Benzo(b)fluora	inthene		< 330	330	ug/kg	
Benzo(k)fluora	inthene		< 330	330	ug/kg	
Benzo(ghi)pery	ylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcohol			< 330	330	ug/kg	
bis(2-Chloroetl	hoxy)methane		< 330	330	ug/kg	
bis(2-Chloroetl	hyl)ether		< 330	330	ug/kg	
bis(2-Chloroise	opropyl)ether		< 330	330	ug/kg	
bis(2-Ethylhex	yl)phthalate		< 330	330	ug/kg	
4-Bromopheny	l phenyl ether		< 330	330	ug/kg	
Butyl benzyl pl			< 330	330	ug/kg	
Carbazole			< 330	330	ug/kg	
4-Chloroaniline	e	5	< 330	330	ug/kg	
4-Chloro-3-me	thylphenol		< 330	330	ug/kg	
2-Chloronaphth			< 330	330	ug/kg	
2-Chloropheno	l		< 330	330	ug/kg	
4-Chloropheny	l phenyl ether	6	< 330	330	ug/kg	
Chrysene			< 330	330	ug/kg	
Dibenzo(a,h)an	nthracene		< 90	90	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorobe	enzene		< 330	330	ug/kg	
1,3-Dichlorobe	enzene		< 330	330	ug/kg	
1,4-Dichlorobe	nzene		< 330	330	ug/kg	
3,3'-Dichlorobe	enzidine		< 660	660	ug/kg	

IL ELAP / NELAC Accreditation # 100292

	Analytical Report		
Client:	SEECO ENVIRONMENTAL SERVICES	Date Collected:	03/16/18
Project ID:	11879	Time Collected:	
Sample ID:	B-3 S-2	Date Received:	03/23/18
Sample No:	18-1461-001	Date Reported:	03/30/18
Results are rep	orted on a dry weight basis.	-	

Analyte		Result	R.L.	Units	Flags			
Semi-Volatile Compounds Analysis Date: 03/28/18	Method: 8270C	Preparation Method 3540C Preparation Date: 03/27/18						
Diethyl phthalate		< 330	330	ug/kg				
2,4-Dimethylphenol		< 330	330	ug/kg				
Dimethyl phthalate		< 330	330	ug/kg				
Di-n-butyl phthalate		< 330	330	ug/kg				
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg				
2,4-Dinitrophenol		< 1,600	1600	ug/kg				
2,4-Dinitrotoluene		< 250	250	ug/kg				
2,6-Dinitrotoluene		< 260	260	ug/kg				
Di-n-octylphthalate		< 330	330	ug/kg				
Fluoranthene		< 330	330	ug/kg				
Fluorene		< 330	330	ug/kg				
Hexachlorobenzene		< 330	330	ug/kg				
Hexachlorobutadiene		< 330	330	ug/kg				
Hexachlorocyclopentadiene		< 330	330	ug/kg				
Hexachloroethane		< 330	330	ug/kg				
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg				
Isophorone		< 330	330	ug/kg				
2-Methylnaphthalene		< 330	330	ug/kg				
2-Methylphenol		< 330	330	ug/kg				
3 & 4-Methylphenol		< 330	330	ug/kg				
Naphthalene		< 330	330	ug/kg				
2-Nitroaniline		< 1,600	1600	ug/kg				
3-Nitroaniline		< 1,600	1600	ug/kg				
4-Nitroaniline		< 1,600	1600	ug/kg				
Nitrobenzene		< 260	260	ug/kg				
2-Nitrophenol		< 1,600	1600	ug/kg				
4-Nitrophenol		< 1,600	1600	ug/kg				
n-Nitrosodi-n-propylamine		< 90	90	ug/kg				
n-Nitrosodimethylamine		< 330	330	ug/kg				
n-Nitrosodiphenylamine		< 330	330	ug/kg				
Pentachlorophenol		< 330	330	ug/kg				
Phenanthrene		< 330	330	ug/kg				
Phenol		< 330	330	ug/kg				
Pyrene		< 330	330	ug/kg				
Pyridine		< 330	330	ug/kg				
1,2,4-Trichlorobenzene		< 330	330	ug/kg				

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical F	Report		
Client:	SEECO ENVIRON	MENTAL SERVICES		Date (Collected: 03/16/18
Project ID:	11879			Time	Collected:
Sample ID:	B-3 S-2			Date F	Received: 03/23/18
Sample No:	18-1461-001				Reported: 03/30/18
Results are rep	orted on a dry weight	basis.			
Analyte			Result	R.L.	Units Flags
Semi-Volatile Analysis Date:		Method: 8270C			Method 3540C Date: 03/27/18
2,4,5-Trichloro	phenol		< 330	330	ug/kg
2,4,6-Trichloro	phenol		< 330	330	ug/kg
Pesticides/PC Analysis Date:		Method: 8081A/80	82		Method 3546 Date: 03/27/18
Aldrin			< 8.0	8.0	ug/kg
Aroclor 1016			< 80.0	80.0	ug/kg
Aroclor 1221			< 80.0	80.0	ug/kg
Aroclor 1232			< 80.0	80.0	ug/kg
Aroclor 1242			< 80.0	80.0	ug/kg
Aroclor 1248			< 80.0	80.0	ug/kg
Aroclor 1254			< 160	160	ug/kg
Aroclor 1260			< 160	160	ug/kg
alpha-BHC			< 2.0	2.0	ug/kg
beta-BHC			< 8.0	8.0	ug/kg
delta-BHC			< 8.0	8.0	ug/kg
gamma-BHC (I	Lindane)		< 8.0	8.0	ug/kg
alpha-Chlordar			< 80.0	80.0	ug/kg
gamma-Chlord	ane		< 80.0	80.0	ug/kg
4,4'-DDD			< 16.0	16.0	ug/kg
4,4'-DDE			< 16.0	16.0	ug/kg
4,4'-DDT			< 16.0	16.0	ug/kg
Dieldrin			< 16.0	16.0	ug/kg
Endosulfan I			< 8.0	8.0	ug/kg
Endosulfan II			< 16.0	16.0	ug/kg
Endosulfan sul	fate		< 16.0	16.0	ug/kg
Endrin			< 16.0	16.0	ug/kg
Endrin aldehyd	le		< 16.0	16.0	ug/kg
Endrin ketone			< 16.0	16.0	ug/kg
Heptachlor			< 8.0	8.0	ug/kg
Heptachlor epo	oxide		< 8.0	8.0	ug/kg
Methoxychlor			< 80.0	80.0	ug/kg
Toxaphene	Professional and a state of the		< 160	160	ug/kg
Total Metals Analysis Date:	03/26/18	Method: 6010C		Preparation Preparation D	Method 3050B Date: 03/26/18

Arsenic

6.2

mg/kg

IL ELAP / NELAC Accreditation # 100292

		Analytical F	Report			
Client:	SEECO ENVIRON	MENTAL SERVICES		Date	Collected:	03/16/18
Project ID:	11879			Time	Collected:	
Sample ID:	B-3 S-2			Date 1	Received:	03/23/18
Sample No:	18-1461-001			Date 1	Reported:	03/30/18
Results are repo	orted on a dry weight	basis.			-	
Analyte			Result	R.L.	Units	Flags
Total Metals Analysis Date:	03/26/18	Method: 6010C		Preparation Preparation		
Barium			110	0.5	mg/kg	
Cadmium			< 0.5	0.5	mg/kg	
Chromium			17.5	0.5	mg/kg	
Lead			10.1	0.5	mg/kg	
Selenium			< 1.0	1.0	mg/kg	
Silver	-1000	94 fewyddyn y y ganwyr ywlei y 1 fel y y glyfer y fewyd fel yn gwreidio y arburnau a ma canw addraedd g	0.8	0.2	mg/kg	
Total Mercury Analysis Date:		Method: 7471B				
Mercury			< 0.05	0.05	mg/kg	
pH @ 25°C, 1: Analysis Date:	2 03/26/18 9:55	Method: 9045D 20)04	nn Bendelmann de die Friedersche Andersteinung von gester gester		
pH @ 25°C, 1:2	2		7.73		Units	

Relinquished By:		FOR LAB USE ONLY: Cooler Temperature: 0.1-6°C Yest No Received within 6 brs. of collection: Ice Present: Yest No No				3/16 635		Codes: S = Soil W = Water	P.O. #:	Project I.D.: 11379	LET V CO MICANNII # TAN???	E-mail: firstinfo@firstenv.com	Naperville, Illinois 60563 Phone: (630) 778-1200 • Fax: (630) 778-1233	1600 Shore Road, Suite D	First Environmental Laboratories	Environmental Laboratories, Inc.	First
Date/Time	, or	C Sample Refrigerated: Yes_ No_ Refrigerator Temperature:°C Program:					Sample Description Matrix Comments	O = Other	Nor All All	1 5 1 1 5 W	Sampled By:		Phone: e-mail:	City: State:	Street Address:	Company Name: Stx28	CHAIN OF CUSTODY RECORD
2/3/1X 10		7				100-1011.81	Lab I.D.							Zip:			Page of pgs

•

٠

•

•

F....

SECTION 00 42 13 <u>ADM1</u> – PROPOSAL FORM

To the Mayor of the City of St. Charles, Illinois:

1.1 Proposal of (*Name and Address of Bidder*)

for the improvements designated in Paragraph A below for including:

- A. The proposed improvement consists primarily of the following:
 - 1. Demolition
 - a. Removal of ductile iron sanitary force main along Dunham Road.
 - b. Earth Excavation.
 - c. Roadway Pavements and Concrete Sidewalk.
 - 2. Site Work
 - a. C900 sanitary force main along Dunham Road.
 - b. Air Release and Force Main Cleanout Structures.
 - c. Pavement Patching and Concrete Sidewalk Replacement.
 - d. Restoration (seed & blanket) and Erosion and Sediment Control Measures.

The plans for the proposed improvement are those prepared Trotter and Associates, Inc., 40W201 Wasco Road, Suite D, St. Charles, Illinois 60175. Said plans are designated as Engineering Plans for "Dunham Road Sanitary Force Main Replacement – City of St. Charles, Illinois" and which cover the work described in Paragraph 1.1 above for the lump sum price of:

Base Bid Price (in words)			
	_Dollars an	nd	Cents.

Base Bid Price (in figures) \$_____

Indicate the subtotal for each part of the project as detailed in the Bid Schedule shown on the following pages. The total bid price must match that indicated above:

CITY OF ST. CHARLES Dunham Road Sanitary Force Main Replacement <u>Base Bid Schedule</u>

PAY ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	EXTENDED COST
1	Topsoil Furnish and Place, 4"	614	SY		
2	Seeding, IDOT Class I and Fertilizer	614	SY		
3	Removal and Disposal of Non-Hazardous Special Waste or Certified Non-Special Waste	678	Tons		
4	Trench Backfill	616	CY		
5	Dual Tracer Wire within 1" Sch. 40 PVC Conduit	2,930	LF		
6	Tracer Wire Termination Boxes	10	EA		
7	4"x2" DI Eccentric Reducer	1	EA		
8	8" DI Blind Flange	16	EA		
9	8" DI Restrained MEGAFLANGE 45	17	EA		
10	8" DI Restrained MEGAFLANGE Solid Sleeve, Long	1	EA		
11	8"x4" DI Restrained MEGAFLANGE MJ/FL Tee	1	EA		
12	8"x8" DI Restrained MEGAFLANGE Tee	1	EA		
13	8"x8" DI Restrained MEGAFLANGE Wye	12	EA		
14	8"x8" DI Restrained MEGAFLANGE Cross	1	EA		
15	DI Plug Valve, 8" DIA, MJ with Valve Box	14	EA		
16	DI Plug Valve, 4" DIA, Flanged	1	EA		
17	2" SS Air Release Valve, SS Connection Pipe & Discharge Pipe	1	EA		
18	Connection to Existing Sanitary Manhole w/Internal Drop	1	EA		
19	Remove Existing Sanitary Force Main	75	LF		
20	Silt Fence	515	LF		
21	Erosion Control Blanket	614	SY		
22	Inlet Protection	3	EA		
23	HMA Full Depth Removal and Replacement	81	SY		
24	Traffic Control and Protection	1	LS		
25	Gravel Shoulder, Removal and Replacement	46	SY		
26	PCC Sidewalk, 5", Removal and Replacement	530	SF		
27	Sanitary Manhole, 5'-Diameter, Type A-1-C, Frame and Lid	1	EA		
28	Sanitary Manhole, 4'-Diameter w/External Drop, Type A-1-C, Frame and Lid	1	EA		
29	Sanitary Cleanout, 2'-Diameter, Type A-1-C, Frame and Lid	16	EA		
30	8" DIP Sanitary Force Main	222	LF		
31	10" DIP Sanitary Sewer	20	LF		
32	Open-Cut Certa-Lok Sanitary Force Main, DR 18, 8"	127	LF		
33	Horizontal Directional Drill, Certa-Lok Sanitary Force Main, DR 18, 8"	2,803	LF		
34	Testing of Rejected Soils - Allowance Three Tests	3	EA	\$ 2,000.00	
35	Pressure Testing	1	LS	. ,	
36	Bypass Piping	1	LS		
37	Mobilization	1	LS		
	TOTAL BID PRICE	-	~		

00 42 13 <u>ADM1</u> - 2

- 1.2 Bidding Alternates: The following alternates bid price is an integral part of this proposal, and to be considered responsive, the bidder shall provide a proposal for the Base Bid, and also for the following Alternate Bid. The City of St. Charles reserves the right to award a contract on the basis of Base Bid or the Alternate Bid as the City of St. Charles budgetary constraints dictate.
 - A. Alternate Bid No. 1:
 - 1. The scope of work included in Alternate Bid No. 1 is as follows: Directionally-drill the proposed 8" sanitary force main across Dunham Road.

Alternate Bid No. 1 includes the work described the paragraph above for the lump sum price of:

Alternate Bid No. 1 Lump Sum Price (in words)

_____Dollars and _____Cents.

Alternate Bid No. 1 Lump Sum Price (in figures)

\$_____

Indicate the subtotal for each part of the project as detailed in the Bid Schedule shown on the following pages. The total bid price must match that indicated above:

CITY OF ST. CHARLES DUNHAM ROAD SANITARY FORCE MAIN REPLACEMENT <u>Alternate Bid Schedule</u>

PAY ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	EXTENDED COST
1	Topsoil Furnish and Place, 4"	<u>604</u>	SY		
2	Seeding, IDOT Class I and Fertilizer	<u>604</u>	SY		
3	Removal and Disposal of Non-Hazardous Special Waste or Certified Non-Special Waste	568	Tons		
4	Trench Backfill	516	CY		
5	Dual Tracer Wire within 1" Sch. 40 PVC Conduit	2,930	LF		
6	Tracer Wire Termination Boxes	10	EA		
7	4"x2" DI Eccentric Reducer	1	EA		
8	8" DI Blind Flange	16	EA		
9	8" DI Restrained MEGAFLANGE 45	17	EA		
10	8" DI Restrained MEGAFLANGE Solid Sleeve, Long	1	EA		
11	8"x4" DI Restrained MEGAFLANGE MJ/FL Tee	1	EA		
12	8"x8" DI Restrained MEGAFLANGE Tee	1	EA		
13	8"x8" DI Restrained MEGAFLANGE Wye	12	EA		
14	8"x8" DI Restrained MEGAFLANGE Cross	1	EA		
15	DI Plug Valve, 8" DIA, MJ with Valve Box	14	EA		
16	DI Plug Valve, 4" DIA, Flanged	1	EA		
17	2" SS Air Release Valve, SS Connection Pipe & Discharge Pipe	1	EA		
18	Connection to Existing Sanitary Manhole w/Internal Drop	1	EA		
19	Remove Existing Sanitary Force Main	75	LF		
20	Silt Fence	515	LF		
21	Erosion Control Blanket	604	SY		
22	Inlet Protection	3	EA		
23	HMA Full Depth Removal and Replacement	54	SY		
24	Traffic Control and Protection	1	LS		
25	Gravel Shoulder, Removal and Replacement	0	SY		
26	PCC Sidewalk, 5", Removal and Replacement	530	SF		
27	Sanitary Manhole, 5'-Diameter, Type A-1-C, Frame and Lid	1	EA		
28	Sanitary Manhole, 4'-Diameter w/External Drop, Type A-1-C, Frame and Lid	1	EA		
29	Sanitary Cleanout, 2'-Diameter, Type A-1-C, Frame and Lid	16	EA		
30	8" DIP Sanitary Force Main	222	LF		
31	10" DIP Sanitary Sewer	20	LF		
32	Open-Cut Certa-Lok Sanitary Force Main, DR 18, 8"	64	LF		
33	Horizontal Directional Drill, Certa-Lok Sanitary Force Main, DR 18, 8"	2,866	LF		
34	Testing of Rejected Soils - Allowance Three Tests	3	EA	\$ 2,000.00	
35	Pressure Testing	1	LS		
36	Bypass Piping	1	LS		
37	Mobilization	1	LS		
	TOTAL ALTERNATE BID PRICE			-	

September 21, 2018 October 18, 2018

00 42 13 <u>ADM1</u> - 4

- 1.4 In submitting this Proposal, the undersigned declares that the only persons or parties interested in the Proposal as principals are those named herein and that the Proposal is made without collusion with any person, firm or corporation.
- 1.5 The undersigned further declares that he has carefully examined the Proposal, Plans, Specifications, Agreement and Contract Bond included in the Specifications and Special Provisions, and that he has inspected in detail the site of the proposed work, and that he has familiarized himself with all of the local conditions affecting the Contract and the detailed requirements of construction, and understands that in making this proposal, he waives all right to plead any misunderstanding regarding the same.
- 1.6 The undersigned further understands and agrees that, if this proposal is accepted, he is to furnish and provide all necessary machinery, tools, apparatus and other means of construction, and to do all of the work, and to furnish all of the materials specified in the contract, except such materials as are to be furnished by the OWNER in the manner and at the time therein prescribed, and in accordance with the requirements therein set forth.
- 1.7 The undersigned further agrees to execute a contract for this work and present the same to the OWNER within ten (10) days after the date of notice of the award of the contract to him.
- 1.8 The undersigned further agrees that he and his surety will execute and present within ten (10) days after the date of notice of the award of contract, a contract bond satisfactory to and in the form prescribed by the OWNER, in the penal sum of the full amount of the contract, guaranteeing the faithful performance of the work in accordance with the terms of the contract.
- 1.9 The undersigned further agrees to begin work not later than ten (10) days after the execution and approval of the Contract and Contract Bond, and receipt of "Notice to Proceed" unless otherwise authorized or directed by the OWNER and to prosecute the work in such manner and with sufficient materials, equipment, and labor as will insure its completion within the time limit specified herein, it being understood and agreed that the completion within the time limit is an essential part of the contract. The undersigned agrees to substantial completion of the work within One Hundred Thirty (130) calendar days and to final completion of the work within One Hundred and Forty-Five (145) calendar days after the date of the "Notice to Proceed", unless additional time shall be granted by the ENGINEER in accordance with the provisions of the specifications. In case of failure to complete the work within the time named herein or within such extra time as may have been allowed by extensions, the undersigned agrees that the OWNER shall withhold, from such sums as may be due him under the terms of this contract, the costs set forth in the specifications, which costs shall be considered and treated not as a penalty, but as damages due the OWNER from the undersigned by reason of inconvenience to the OWNER added cost of Engineering and supervision, additional finance charges, and other items which have caused an expenditure of OWNER's funds resulting from the failure of the undersigned to complete the work within the time specified in the contract.
- 1.10 Provisions for Liquidated Damages are set forth in the Agreement.
- 1.11 If this proposal is accepted and the undersigned shall fail to execute a Contract and Contract Bond as required herein, it is hereby agreed that the amount of the bond, check or draft shall become the property of the OWNER and shall be considered as payment of damages due to

September 21, 2018 October 18, 2018 00 42 13 ADM1 - 5

delay and other causes suffered by OWNER because of the failure to execute said Contract and Contract Bond; otherwise said bond, check or draft shall be returned to the undersigned.

- 1.12 By submission of the Bid, each bidder certifies, and in the case of a joint bid each party thereto certifies as to his or her own organization, that in connection with the bid.
 - A. The prices in the bid have been arrived at independently, without consultation, communication, or agreement, for the purpose of restricting competition, as to any matter relating to such prices with any other bidder or with any competitor.
 - B. Unless otherwise required by law, the prices which have been quoted in the bid have not knowingly been disclosed by the bidder, prior to opening, directly or indirectly to any other bidder or to any competitor; and
 - C. No attempt has been made or will be made by the bidder to induce any other person or firm to submit or not to submit a bid for the purpose of restricting competition.
- 1.13 Each person signing the bid shall certify that:
 - A. He or she is the person in the bidder's organization responsible within that organization for the decision as to the prices being bid and that he or she has not participated, and will not participate, in any action contrary to paragraph 12.A through 12.C above; or
 - B. He or she is not the person in the bidder's organization responsible within that organization for the decision as to the prices being bid but that he or she has been authorized to act as agent for the persons responsible for such decision in certifying that such persons have not participated, and will not participate, in any action contrary to paragraph 12.A through 12.C above, and as their agent shall so certify. He or she shall also certify that he or she has not participated, and will not participate, in any action contrary to paragraph 12.A through 12.C above.
- 1.14 By submission of the Bid, each bidder certifies, and in the case of a joint bid each party thereto certifies as to his or her own organization, that wages paid in connection with the Project shall be paid at prevailing rates not less than those prevailing under the Employment of Illinois Workers on Public Works Act (30 ILCS 570) and the Illinois Prevailing Wage Act (820 ILCS 130) as defined by the Unites States Department of Labor, as well as the City of St. Charles Ordinance 2018-M-22. Bidder further certifies that the provisions contained in SECTION 00 43 43 –WAGE RATES FORM will be exercised in the performance of any contract resulting from this Bid.
- 1.15 The undersigned herein agrees that at least 51% of the contracted work will be completed by the General Contractor. Subcontractors may be used as long as their portion of the contracted work is the minority share of the project in cost.

BID SECURITY

ATTACH BANK DRAFT, BANK CASHIER'S CHECK OR CERTIFIED CHECK HERE

IMPORTANT: Surety companies executing BONDS must appear on the Treasury Department's most current list (Circular 570 as amended) and be authorized to transact business in the state where the PROJECT is located.

September 21, 2018 October 18, 2018 00 42 13 ADM1 - 6

Trotter & Associates, Inc. STC-111

(If an Individual)	Signature	of Bidder:	(SE	AL)
	Business A	Address:		-
				-
(If a Co-partnershi	p) Firm]	Name		(SEAL)
	Signature	of Bidder		
	Business A	Address:		
(Insert Names and	addresses			-
of all members of t	he Firm)			
				-
				- -
				-
(If a Corporation)	Corporate	Name		(SEAL)
	Signature		President	
	Attested b	y:	Secretary	
	Business A	Address		
(Insert Names of O	officers)	President		
		Secretary		
		Treasurer		

CERTIFICATE OF NON-DISQUALIFICATION

UNDER IL. COMPILED STATUTES, CH. 720, SEC. 33E-11

The undersigned, upon being first duly sworn, hereby certifies to the City of St. Charles, Kane and DuPage Counties, Illinois, that

(CONTRACTOR)

is not barred from contracting with any unit of State or local government, as a result of a violation of Ch. 720, Sec. 33E–3 or Sec. 33E–4 of the Illinois Revised Statutes.

	Name of Contractor	
	Signature	
	Print/Type Name	
	Title	
Subscribed and sworn to before me this	day of,	2018.
	Notary Public	
	Commission Expires	

Notary Seal

NOTE TO BIDDER: Anyone who makes a false statement, material to this Certification, commits a Class 3 Felony under Ch. 720, Sec. 33E–11(b) of the Illinois Compiled Statutes.

CERTIFICATE OF COMPLIANCE OF ILLINOIS COMPILED STATUTES CH. 65, SEC 11–42.1

The undersigned, upon being first duly sworn, hereby certifies to the City of St. Charles, Kane and DuPage Counties, Illinois, that

(CONTRACTOR)

is not currently delinquent in the payment of any tax administered by or owed to the Illinois Department of Revenue, or otherwise in default upon any such tax as defined under Chapter 65, Section 11–42.1, Illinois Compiled Statutes.

	Name of Contractor	r
	Signature	
	Print/Type Name	
	Title	
ubscribed and sworn to before me this	day of	, 2018.
	Notary Public	
	Commission Expire	25

CERTIFICATE OF COMPLIANCE WITH SAFETY STANDARDS

The undersigned, upon being first duly sworn, hereby certifies to the City of St. Charles, Kane and DuPage Counties, Illinois, that

(CONTRACTOR)

shall comply with all local, state and federal safety standards.

Name of Contractor

Signature

Print/Type Name

Title

Subscribed and sworn to before me this _____ day of _____, 2018.

Notary Public

Commission Expires

Notary Seal

Trotter & Associates, Inc. STC-111

CERTIFICATE OF COMPLIANCE WITH PUBLIC ACT 87–1257

OF THE ILLINOIS HUMAN RIGHTS ACT

The undersigned, upon being first duly sworn, hereby certifies to the City of St. Charles, Kane and DuPage Counties, Illinois, that

(CONTRACTOR)

complies with the Illinois Human Rights Act as amended by Section 2 - 105, Public Act 87 - 1257 in relation to employment and human rights.

		Name of Contractor	
		Signature	
		Print/Type Name	
		Title	
	1	C	2010
Subscribed and sworn to before me this	day	01	, 2018.
		Notary Public	
		Commission Expires	
		Notary Sec	al
END OF SECTION 00 42 13			

This Page Left Blank Intentionally

City of St. Charles 2018 Dunham Road Sanitary Force Main Replacement

Receipt of Addendum Acknowledgement Addendum No. 2

Please check the appropriate box, enter the corresponding information required below, and return via fax to 630-587-0475 or email to <u>a.mestling@trotter-inc.com</u>. If you do not respond to this notice, repeat notices may follow. Failure to acknowledge receipt of addenda within the project Bid Documents may result in the Bid being declared Non-responsive.

 (Name of Plan Holder)
I have received the Addendum by email. I have confirmed that the Addendum is complete as indicated in the Addendum description.
I have received the Addendum via fax. I have confirmed that the Addendum is complete as indicated in the Addendum description.
 (Signature)
 (Printed Name, Title)
Please send future correspondence by email to the address below.
 (Email Address)
Please send future correspondence by mail to the address below.
 (Recipient)
 (Company)
 (Street)
 (City, State, Zip)
I will not be bidding this project and request no further correspondence.