Prairie Centre Traffic Impact Study

August 17, 2016

Prepared for:

City of St. Charles

Prepared By:

TABLE OF CONTENTS

I. EXECUTIVE SUMMARY 1
II. INTRODUCTION 4
III. EXISTING CONDITIONS 4
IV. SITE TRAFFIC CHARACTERISTICS OF PROPOSED DEVELOPMENT 11
V. FUTURE TRAFFIC OPERATIONS 14
VI. ADDITIONAL CONSIDERATIONS 21
VII. FINDINGS AND RECOMMENDATIONS. 25

I. Executive Summary

Shodeen Group has proposed redevelopment the former St. Charles Mall site on IL Route 38 just east of Randall Road in St. Charles, Illinois. Shodeen Group has previously proposed a number of redevelopment concepts, none of which has been executed. Hampton, Lenzini and Renwick, Inc. (HLR) provided traffic engineering services to the City of St. Charles on most of those previous concepts, the most recent of which was in the form of a Traffic Impact Study in 2010. At that time, the development was known as the St. Charles Towne Centre.

The current concept is a mixed-use development called the St. Charles Prairie Centre. The Prairie Centre property is a $26 \pm$ acre site located on the block bounded by IL Route 38 (Lincoln Highway), Randall Road, Prairie Street, and $14^{\text {th }}$ Street in the City of St. Charles. See the Appendix for a general location map of the study area, an aerial photo overview and a preliminary plan of the proposed development. The concept plan consists of a mix of restaurant, retail, and residential spaces. The current concept plan is similar to the 2010 concept but includes shorter buildings and fewer units. As currently proposed, the Prairie Centre will utilize and improve existing access locations onto IL Route 38 and Prairie Street. No new access points to the surrounding street system are proposed.

Existing Traffic Conditions

Peak period turning movement traffic counts were conducted on weekdays from 6:00 - 9:00 AM and from 3:30-6:30 PM and on Saturdays from 11:00 AM - 2:00 PM in May 2016 at the following 16 intersections:

- IL Route 38 \& Randall Road
- IL Route 38 \& Jewel Driveway
- IL Route 38 \& West Mall Entrance
- IL Route 38 \& East Mall Entrance/Vanderbilt Drive
- IL Route 38 \& 14 ${ }^{\text {th }}$ Street/Bricher Road
- Randall Road \& Prairie Street
- Prairie Street \& Jewel Driveway
- Prairie Street \& West Mall Entrance
- Prairie Street \& East Mall Entrance
- Prairie Street \& Covington Court/Wessel Court
- Prairie Street \& $16^{\text {th }}$ Street
- Prairie Street \& $14^{\text {th }}$ Street
- Prairie Street \& $7^{\text {th }}$ Street
- Prairie Street \& 3 ${ }^{\text {rd }}$ Street
- $14^{\text {th }}$ Street $\&$ Vanderbilt Drive
- $14^{\text {th }}$ Street \& Covington Court/Horne Street

Thirteen-hour weekday counts were also collected from 6:00 AM - 7:00 PM at three intersections on Prairie Street: at $14^{\text {th }}$ Street, $7^{\text {th }}$ Street and $3^{\text {rd }}$ Street.

Traffic Projections

To account for increases in overall traffic growth beyond what the proposed developments will generate, the existing traffic volumes were increased using growth rates provided by the Chicago Metropolitan Agency for Planning (CMAP). A copy of the memo from CMAP regarding these growth rates is included in the Appendix.

Estimated Site-Generated Traffic

Site-generated traffic was estimated using the ITE's Trip Generation Manual, $9^{\text {th }}$ Edition. Land use assumptions were based on information provided by the developer. The residential units were modeled with ITE Code 220, Apartment. The restaurant units were modeled as a combination of ITE Code 932, High-turnover (Sit-down) Restaurant, and ITE Code 934, Fastfood Restaurant with Drive-through Window. The retail units were modeled with ITE Code 826, Specialty Retail Center, except for the weekday AM peak hour, for which ITE Code 820, Shopping Center, was determined to be more reasonable. Adjustments were made to the generated trip amounts for a combined 20% internal capture and pass-by reduction applied to the appropriate uses. The table below summarizes the resulting generated traffic volumes.

Total New Trips after all Adjustments in veh/hr

Peak Hour	In	Out	Total
Weekday AM	377	476	853
Weekday PM	493	377	870
Saturday	477	450	927

Source: ITE Trip Generation Manual, ${ }^{\text {th }}$ Edition

Analyses and Recommendations

Capacity analyses were performed for the study area intersections using Synchro and Highway Capacity Software. The analyses were run for the weekday AM and PM peak hours and the Saturday peak. Analyses were performed for the 2016 Existing Traffic, 2026 Base Year Traffic, and the 2026 Total Traffic. Signal warrants were also analyzed for three intersections on Prairie Street. The resulting recommendations are summarized below. Where a study area intersection is not listed below, no improvements are recommended, and no significant issues were discovered.

IL Route 38 \& Randall Road: This intersection and its turn lanes have sufficient capacity to accommodate the projected 2026 Total Site traffic. Individual movements may operate at LOS E or F, though this is not entirely attributed to the Prairie Centre Development as this occurs in the 2026 Base Traffic scenario also. The proposed future Kane County improvement to add through-traffic lanes to Randall Road will further enhance the capacity of this intersection. No improvements to this intersection are recommended as a result of the proposed development.

IL Route 38 \& West Mall Entrance: The site plans show conversion of the southbound approach to consist of an exclusive left turn lane, an exclusive through lane, and an exclusive right turn lane. Additionally, the northbound and southbound left turn phases should be converted to protected-permissive phasing.

IL Route 38 \& $14^{\text {th }}$ Street: This intersection has the overall capacity to accommodate the projected 2026 Total Traffic. Consideration should be made for adding a northbound right turn lane to reduce existing delays and queues on that approach. No improvements are recommended in connection with the development.

Randall Road \& Prairie Street: This intersection has the overall capacity to accommodate the projected 2026 Total Traffic. However, there are existing issues with the westbound left turn queues and with the interaction between this intersection and the Randall Road and IL

Route 38 intersection. Reconfiguration of the westbound approach and the driveways on that leg could help address this problem. Further, the planned widening of Randall Road will help alleviate these issues. However, since these are existing issues, no specific improvements are recommended as part of this development.

Prairie Street \& 14 th Street: Under 2026 traffic, the northbound left will enter LOS F range during the PM peak hour. However, this intersection has the overall capacity to accommodate the 2026 Total Traffic volumes, with queues reaching four vehicles at most. Although traffic signal warrants are met under the existing traffic at the intersection, installation of traffic signal control is not recommended at this time.

Prairie Street \& $7^{\text {th }}$ Street: Base Year average delays for this intersection reach LOS F during the PM peak hour. Traffic signal control is warranted under existing traffic. A number of improvements could alleviate delays, including signalization or conversion to a roundabout. No improvements are recommended as a part of the development, as the issues here are primarily existing.

Prairie Street \& 3 ${ }^{\text {rd }}$ Street: Base Year average delays for this intersection reach LOS F during the PM peak hour. Traffic signal control is warranted under existing traffic. A number of improvements could alleviate delays, including signalization or conversion to a roundabout. No improvements are recommended as a part of the development, as the issues here are primarily existing.

In summary, few improvements are recommended with this development. The analyses revealed existing concerns within the study area, particularly along Randall Road and along the east end of Prairie Street. While the Prairie Centre development related traffic is expected to contribute to these concerns, the analyses show that the problems will not be avoided by preventing the development.

Kane County has plans to widen Randall Road through the study area limits, which is expected to address the vast majority of issues at the Randall Road intersections. The Prairie Street intersections at $14^{\text {th }}$ Street, $7^{\text {th }}$ Street, and $3^{\text {rd }}$ Street could be improved with signalization, conversion to modern roundabouts, or other possible solutions, as determined by the City of St Charles.

II. Introduction

Shodeen Group has proposed redevelopment of their property on IL Route 38 just east of Randall Road in St. Charles, Illinois. The St. Charles Mall previously occupied this property before closing in 1996 and later being demolished. Since then, Shodeen Group has proposed a number of redevelopment concepts, none of which has been executed. Hampton, Lenzini and Renwick, Inc. (HLR) provided traffic engineering services to the City of St. Charles on most of those previous concepts, the most recent of which was in the form of a Traffic Impact Study in 2010. At that time, the development was known as the St. Charles Towne Centre.

The current concept is a mixed-use development called the St. Charles Prairie Centre. The Prairie Centre property is a $26 \pm$ acre site located on the block bounded by IL Route 38 (Lincoln Highway), Randall Road, Prairie Street, and $14^{\text {th }}$ Street in the City of St. Charles. See Exhibit 1 A at the end of the report for a general location map of the study area. Exhibit 1B displays an aerial photo overview of the existing development parcel and adjoining land uses. A preliminary plan of the proposed development is included as Exhibit 2.

The Prairie Centre concept plan consists of a mix of restaurant, retail, and residential spaces. The current concept plan is similar to the 2010 concept but includes shorter buildings and fewer units. As currently proposed, the Prairie Centre will utilize and improve existing access locations onto IL Route 38 and Prairie Street. No new access points to the surrounding street system are proposed.

III. Existing Conditions

A field reconnaissance of the site was conducted to inventory information on surrounding land uses and the area roadway network. In addition, traffic counts were conducted during the morning, evening and Saturday peak periods at 16 critical intersections.

Surrounding Land Uses

Land uses surrounding the site are predominantly residential to the north and east and predominantly commercial to the south and west. A Jewel supermarket adjoins the west edge of the site, while a series of retail stores adjoin the southeast edge.

Surrounding Roadway Network

The major roadways servicing the study area are Randall Road and IL Route 38. Prairie Street is a collector route that also provides access to this area. $14^{\text {th }}$ Street is a minor collector street to which the site will also have indirect access. A brief description of these roadways is provided below:

- Illinois Route 38, along the frontage of the proposed site, is a four-lane, two-way, eastwest major arterial roadway. There is a flush median along the frontage of the site with pavement striping providing left turn lanes at both existing full-access entrances into the site. The western entrance is controlled by traffic signals. The eastern entrance is controlled by a stop sign on the entrance approach. Approaching Randall Road, the IL Route 38 median is raised and widens to provide dual left turn lanes at the Randall Road intersection. IL Route 38 is under the jurisdiction of IDOT and is posted with a 45 miles-
per-hour (mph) speed limit. It has not been designated as a Strategic Regional Arterial (SRA) by IDOT.
- Randall Road is a major north-south arterial roadway. Through this area, Randall Road provides two through lanes in each direction with left turn lanes at intersections. Randall Road is under the jurisdiction of the Kane County Division of Transportation (KDOT) and has been designated as an SRA. Randall Road is posted with a 45 mph speed limit. The Randall Road intersections with IL Route 38 and with Prairie Street are controlled by traffic signals, which are interconnected with signalized intersections to the north and south along Randall Road, as well as to the east and west along IL Route 38.
- Prairie Street, along the frontage of the proposed site, is a three-lane, two-way collector street. Prairie Street extends from Randall Road east over the Fox River to Riverside Avenue. Its intersection with Randall Road is controlled by traffic signals. Its intersections with $7^{\text {th }}$ Street and with $3^{\text {rd }}$ Street are controlled by all-way stop signs. Prairie Street is under the jurisdiction of the City of St. Charles and is posted with a 30 mph speed limit (25 mph east of $3^{\text {rd }}$ Street).
- $14^{\text {th }}$ Street is a two-lane, two-way, north-south collector street that extends from IL Route 38 north to Prairie Street. $14^{\text {th }}$ Street is under the jurisdiction of the City of St. Charles and is posted with a 25 mph speed limit.

Two other nearby streets of interest include $16^{\text {th }}$ Street and Horne Street. $16^{\text {th }}$ Street is a local street that extends north from Prairie Street and provides a connection to the neighborhood north of Prairie Street and east of Randall Road. Horne Street is a collector street that extends from IL Route 31 west to $14^{\text {th }}$ Street. The westernmost three blocks of this route consist of several turns before Horne Street intersects $14^{\text {th }}$ Street.

Existing Traffic Conditions

Peak period turning movement traffic counts were conducted on weekdays from 6:00 - 9:00 AM and from 3:30-6:30 PM and on Saturdays from 11:00 AM - 2:00 PM in May 2016 at the following 16 intersections:

- IL Route 38 \& Randall Road
- IL Route 38 \& Jewel Driveway
- IL Route 38 \& West Mall Entrance
- IL Route 38 \& East Mall Entrance/Vanderbilt Drive
- IL Route 38 \& 14 $4^{\text {th }}$ Street/Bricher Road
- Randall Road \& Prairie Street
- Prairie Street \& Jewel Driveway
- Prairie Street \& West Mall Entrance
- Prairie Street \& East Mall Entrance
- Prairie Street \& Covington Court/Wessel Court
- Prairie Street \& $16^{\text {th }}$ Street
- Prairie Street \& $14^{\text {th }}$ Street
- Prairie Street \& $7^{\text {th }}$ Street
- Prairie Street \& $3^{\text {rd }}$ Street
- $14^{\text {th }}$ Street \& Vanderbilt Drive
- $14^{\text {th }}$ Street \& Covington Court/Horne Street

Exhibit 3 in Appendix A presents the existing peak hour volumes at these intersections. Thirteen-hour weekday counts were also collected from 6:00 AM - 7:00 PM at three intersections on Prairie Street: at $14^{\text {th }}$ Street, $7^{\text {th }}$ Street and $3^{\text {rd }}$ Street. It should be noted that the St. Charles Mall was demolished in 2002, well before the traffic counts were performed.

Traffic Projections

To account for increases in overall traffic growth beyond what the proposed developments will generate, the existing traffic volumes depicted on Exhibit 3 were increased at a rate of 1.04 percent per year on IL Route 38, 0.63 percent per year on Randall Road, 2.56 percent per year on Prairie Street, and 1.17 percent per year on 14th Street for 12 years. These growth rates were provided by the Chicago Metropolitan Agency for Planning (CMAP). A copy of the memo from CMAP regarding these growth rates is included in Appendix J. These increased traffic volumes were used to develop the 2026 Base Year Traffic.

Traffic generated by the new CVS Pharmacy and its outlots was added to the 2026 Base Year Traffic. This development was under construction at the time this study was executed. Table 1 below shows the traffic volumes added to the 2026 Base Year Traffic volumes. The traffic generated by this site was estimated using the Institute of Transportation Engineers' (ITE) Trip Generation Manual, $9^{\text {th }}$ Edition. The ITE numbers referenced in Table 1 refer to the land use codes from the Trip Generation Manual. The final 2026 Base Year Traffic (no development) volumes can be seen in Exhibit 4.

Table 1
2026 Base Traffic Adjustments

Land Use		Weekday AM		Weekday PM		Saturday	
		Out	In	Out	In	Out	
CVS Pharmacy (ITE 934)	22	20	59	59	48	49	
Outlot (ITE 826)	13	15	14	16	1	1	
Total Adjustment	35	35	73	75	49	50	

Source: ITE Trip Generation Manual, $9^{\text {th }}$ Edition
Capacity Analysis - Existing Traffic and 2026 Base Traffic
Capacity analyses of existing and 2026 Base Year (estimated short-term, no development) weekday AM and PM and Saturday mid-day peak hour traffic conditions were conducted at the aforementioned intersections.

Level of Service (LOS) criteria for signalized and stop sign controlled intersections are based on the methodologies presented in the Highway Capacity Manual(HCM) published by the Transportation Research Board (TRB). LOS criteria range from "A" (good) to "F" (poor) and are based on average delay. It should be noted that the LOS thresholds are different for signalized and stop sign controlled intersections. At two-way stop intersections, LOS criteria for stop sign controlled intersections are defined for each minor movement and are not defined for the intersection as a whole. The LOS delay thresholds for stop sign controlled intersections are also lower than for signalized intersections since driver expectation at a signalized intersection is for a greater delay. The LOS criteria for signalized and stop sign controlled intersections are presented in Table 2.

Table 2
Level of Service Criteria for Signalized and Stop Sign Controlled Intersections
Signalized Intersections

Level of Service	Type of Operating Condition	Average Vehicle Delay (seconds)
A	Very low delay, most vehicles arrive during the green and do not stop at all.	≤ 10.0
B	More vehicles stop at the traffic signal than LOS "A", but otherwise good progression of traffic through the intersection.	$10.1-20.0$
C	Congestion starts to occur; number of vehicles stopping at the intersection is significant.	$20.1-35.0$
D	Congestion is more noticeable, longer delays; some vehicles may not clear on a single cycle.	$35.1-55.0$
E	High delays, poor progression through intersection. Most vehicles do not clear the intersection on a single cycle.	$55.1-80.0$
F	Unacceptable high delay to drivers, demand exceeds capacity, increasing queue lengths.	>80.0

Stop Sign Controlled Intersections

Level of Service	Average Control Delay (sec/veh.)
A	$0-10$
B	$>10-15$
C	$>15-25$
D	$>25-35$
E	$>35-50$
F	>50

Source: Highway Capacity Manual 2000, Transportation Research Board, National Research Council, Washington, D.C.

Table 3 presents the existing and 2026 Base Year (projected short-term) traffic operations at the signalized intersections studied. Analysis of 2016 existing traffic was conducted using existing signal controller settings and existing intersection geometry. Analysis of 2026 Base Year Traffic retained existing intersection geometry but assumed that the traffic signal timings would be reoptimized. Copies of the capacity analysis summaries conducted for the existing critical intersections are included in Appendices E and F.

Table 3
Summary of Existing and Base Year (no development) Traffic Conditions Intersection Level of Service (LOS) and Delay (seconds)

Signalized Intersections

Intersection	Existing 2016 Traffic			Base Year 2026 Traffic (no site)		
	AM Peak	PM Peak	Sat Peak	AM Peak	PM Peak	Sat Peak
IL 38 \& Randall Rd	D (39)	D (43)	D (43)	D (40)	D (49)	D (45)
IL 38 \&	A (6)	A (6)	A (5)	A (6)	A (8)	A (7)
West Mall Entrance	C (28)	C (32)	C (34)	C (24)	D (37)	C (31)
IL 38 \& 14 St St	B (11)	C (23)	C (28)	B (12)	D (42)	D (44)
Prairie St \& Randall Rd	B					

It should be noted that some individual movements operate at LOS E or F. Table 4 gives a detailed breakdown of the 2026 Base Year Traffic, showing each individual movement's Level of Service.

Table 4
LOS \& Delay by Movement for 2026 Base Traffic

Intersection	Peak Hour	Overall LOS \& (delay)	LOS \& (delay) by Movement										
			Eastbound		Westbound			Northbound			Southbound		
			L	T \quad R	L	T	R	L	T	R	L	T	R
 Randall Rd	AM	D (40)	$\begin{gathered} \hline \mathrm{E} \\ (72) \\ \hline \end{gathered}$	D A (54) (0)	$\begin{gathered} \hline \mathrm{E} \\ (67) \end{gathered}$	$\begin{gathered} \hline \text { D } \\ (53) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (74) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (38) \end{gathered}$	A (0)	$\begin{gathered} \hline \text { F } \\ (81) \end{gathered}$	$\begin{gathered} C \\ (22) \\ \hline \end{gathered}$	A (3)
	PM	D (49)	$\begin{gathered} F \\ (84) \end{gathered}$	D A (49) (6)	$\begin{gathered} \mathrm{E} \\ (74) \end{gathered}$	$\begin{gathered} \text { E } \\ (73) \end{gathered}$	$\begin{gathered} \text { D } \\ (38) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (77) \end{gathered}$	$\begin{gathered} E \\ (57) \end{gathered}$	$\begin{gathered} \hline \text { A } \\ (0) \end{gathered}$	$\begin{gathered} \text { F } \\ (87) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (28) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7) \end{gathered}$
	Sat	D (45)	$\begin{gathered} \text { F } \\ (87) \\ \hline \end{gathered}$	E A (61) (9)	$\begin{gathered} \text { F } \\ (87) \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ (87) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (32) } \\ \hline \end{gathered}$	$\begin{gathered} \text { E } \\ \text { (63) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (40) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (1) \\ \hline \end{gathered}$	$\begin{gathered} E \\ \text { E } \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (26) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (2) \\ \hline \end{gathered}$
IL 38 \& W Mall Entrance	AM	A (6)	A (2)	A (6)	A (2)	A (2)		$\begin{gathered} \mathrm{E} \\ (57) \end{gathered}$	B (17)		$\begin{gathered} \hline \mathrm{D} \\ \hline(49) \end{gathered}$	$\begin{gathered} \hline D \\ (48) \end{gathered}$	A (0)
	PM	A (8)	$\begin{gathered} \text { A } \\ \text { (3) } \\ \hline \end{gathered}$	A (6)	A (1)	A (5)		$\begin{gathered} \text { E } \\ \text { (58) } \\ \hline \end{gathered}$	B (15)		$\begin{gathered} \text { D } \\ (51) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (46) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0) \\ \hline \end{gathered}$
	Sat	A (7)	$\begin{gathered} \text { A } \\ \text { (3) } \\ \hline \end{gathered}$	A (7)	A (1)	A (3)		$\begin{array}{\|c} \hline \text { D } \\ (49) \\ \hline \end{array}$	B (13)		$\begin{gathered} \text { D } \\ (43) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (40) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0) \\ \hline \end{gathered}$
$\begin{aligned} & \text { IL } 38 \& \\ & 14^{\text {th }} \mathrm{St} \end{aligned}$	AM	C (24)	$\begin{gathered} \hline \mathrm{B} \\ (11) \\ \hline \end{gathered}$	B (19)	$\begin{gathered} \hline \mathrm{B} \\ (14) \\ \hline \end{gathered}$	B (19)		$\begin{gathered} \hline \mathrm{C} \\ (25) \end{gathered}$	D (43)		$\begin{gathered} C \\ \text { (33) } \end{gathered}$	D (35)	
	PM	D (37)	$\begin{gathered} \text { C } \\ (27) \end{gathered}$	C (38)	$\begin{gathered} \text { C } \\ (23) \end{gathered}$	C (34)		$\begin{gathered} C \\ (24) \\ \hline \end{gathered}$	E (56)		$\begin{gathered} C \\ \text { C } \\ \hline \end{gathered}$	D (40)	
	Sat	C (31)	$\begin{gathered} B \\ \text { B } \\ \hline \end{gathered}$	C (31)	$\begin{gathered} \hline \text { D } \\ (37) \\ \hline \end{gathered}$	C (28)		$\begin{gathered} \mathrm{B} \\ (18) \\ \hline \end{gathered}$	D (39)		$\begin{gathered} \text { C } \\ (24) \\ \hline \end{gathered}$	C (30)	
Prairie St \& Randall Rd	AM	B (12)	$\begin{gathered} \hline \mathrm{D} \\ (45) \end{gathered}$	D (36)	$\begin{gathered} \hline E \\ (68) \\ \hline \end{gathered}$	$\begin{gathered} \hline D \\ (51) \end{gathered}$	$\begin{gathered} \text { A } \\ (10) \end{gathered}$	$\begin{gathered} \hline \text { A } \\ (2) \\ \hline \end{gathered}$	A (5)		$\begin{gathered} \hline \text { B } \\ (15) \end{gathered}$	B (12)	
	PM	D (42)	$\begin{gathered} \text { D } \\ \text { (50) } \\ \hline \end{gathered}$	D (37)	$\begin{gathered} F \\ (292) \\ \hline \end{gathered}$	$\begin{gathered} E \\ (61) \end{gathered}$	$\begin{gathered} c \\ C \\ \text { (33) } \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ (11) \end{gathered}$	C (30)		$\begin{gathered} \text { D } \\ (43) \\ \hline \end{gathered}$	B (19)	
	Sat	D (44)	$\begin{gathered} \text { D } \\ (41) \end{gathered}$	D (53)	$\begin{aligned} & \frac{\mathrm{F}}{\mathrm{~F}} \\ & (103) \end{aligned}$	$\begin{gathered} \text { D) } \\ \hline \text { (53) } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (38) } \end{gathered}$	$\begin{gathered} c \\ \hline \text { B } \\ (16) \end{gathered}$	D (47)		$\begin{gathered} E \\ E \\ (75) \end{gathered}$	C (32)	

Analysis results show the following:
IL Route 38 and Randall Road: Under existing conditions and signal timings, this intersection operates at an over-all Level of Service D, although some individual movements currently operate at LOS E or F during peak times. With background traffic growth projected to 2026, and signal timings re-optimized, there will be both slight increases and slight decreases in delay depending on the particular movement and peak hour. Some vehicle queues do exceed turn lane storage lengths in both analyses, including some through-lane queues that extend beyond the turn lane tapers, periodically blocking entry by turning vehicles until through traffic moves up. Traffic volumes currently approach the capacity of the intersection and are expected to remain so under 2026 Base Year Traffic conditions.

IL Route 38 and the West Mall Entrance: Analyses of existing traffic using existing signal timing settings show minimal delays to IL Route 38 traffic through this intersection. Drivers on the shopping center driveway approaches experience delays in the range of LOS D. Currently, IL Route 38 traffic is assigned about 75% of the available green time, which is an appropriate balance based on traffic volumes and the need to move traffic on the arterial route. Traffic volumes currently do not exceed the capacity of the intersection and are not expected to do so under 2026 Base Year Traffic conditions.

IL Route 38 and $14^{\text {th }}$ Street: Traffic on IL Route 38 currently operates at an acceptable LOS C with small increases to delay in the projected 2026 base year. Vehicle queues do not exceed turn lane storage lengths in either analysis, although through-lane queues will extend beyond the turn lane tapers, periodically blocking entry by turning vehicles until through traffic moves up. As the volume of through traffic increases on IL Route 38, delays for all left turns and cross street movements will increase. However, analyses of existing and the 2026 base year show that traffic will not exceed the capacity of the intersection. Note that there are also lengthy delays on the northbound approach. Addition of a northbound right turn lane could reduce these delays. However, as mitigation for an existing issue, this improvement is not recommended as part of this study.

Prairie Street and Randall Road: Analysis of existing traffic shows that the overall Level of Service at this intersection is B to C. However, during PM and Saturday peak periods, the queue of westbound left turning traffic significantly overflows the westbound left turn lane. This movement operates at LOS E or F during these times. Green time for Prairie Street is limited by the need to provide adequate time for the large volume of traffic flowing on Randall Road and to keep these movements coordinated with the nearby IL Route 38/Randall Road intersection to the south. The existing peak period overflow of the westbound left turn lane will frequently block the Jewel Supermarket driveway, as well as the entrance to the retail strip mall on the south side of the street west of the Jewel store. These entrances could be converted to allow only right turns to reduce potential conflicts for left turning driveway traffic with the westbound queues from Randall Road. The retail development on the north side of Prairie Street has access to another Prairie Street driveway 200 feet to the east, and the Jewel supermarket has access to another Prairie Street driveway about 500 feet to the east. Additionally, the full access entry to the Jewel site could be relocated to align with the drive aisle at the front of the Jewel store to maintain Jewel's current access. Cross access from the Jewel site would need to be provided to the retail strip mall in the southeast corner of Randall Road and Prairie Street, since that site's full access on Prairie Street is currently its only access. This driveway conversion would enable the Prairie Street westbound left turn

Page 9
lane at Randall Road to be lengthened, allowing traffic to clear more efficiently during the westbound left turn arrow. In order to reinforce the right-turn-only operation of these driveways and prevent illegal left turns, the flush median on Prairie Street would need to be converted to a raised median from Randall Road at least along the length of the extended westbound left turn lane and preferably to the relocated full access Jewel driveway.

In the 2026 PM and Saturday peak hours, northbound through queues are expected to spill back into the Randall Road/IL Route 38 intersection. The best way to alleviate this concern is to construct the planned widening of Randall Road to six lanes, which is discussed in detail later in this report.

Table 5 shows a summary of analysis results for stop sign controlled intersections. Capacity analyses of stop sign controlled intersections provide Levels of Service and delays for individual intersection movements, but not the intersection as a whole. Results for the most critical movement at each intersection are shown in the table below.

Table 5
Summary of Existing and Base Year (no development) Traffic Conditions Level of Service (LOS) and Delay (seconds)

Stop Sign Controlled Intersections

Critical Movement	Existing 2016 Traffic			Base Year 2026 Traffic (no site)		
	AM Peak	PM Peak	Sat Peak	AM Peak	PM Peak	Sat Peak
East Mall Entrance at IL 38	$\begin{gathered} \hline \text { SB } \\ D(25) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SB } \\ \mathrm{D}(28) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{NB} \\ \mathrm{E}(45) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NB } \\ C(23) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SB } \\ F(62) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NB } \\ F(85) \end{gathered}$
Prairie St at West Mall Ent.	$\begin{gathered} \mathrm{NB} \\ \mathrm{~A}(9) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(12) \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(10) \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(11) \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(13) \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(11) \end{gathered}$
Prairie St at East Mall Entrance	$\begin{gathered} \mathrm{NBL} \\ \mathrm{~B}(13) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(15) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{~B}(13) \end{gathered}$	$\begin{gathered} \hline \text { NBL } \\ \text { B (15) } \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(19) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(16) \end{gathered}$
$\begin{aligned} & \text { Prairie St at } \\ & 16^{\text {th }} \mathrm{St} \\ & \hline \end{aligned}$	$\begin{gathered} \text { SB } \\ \text { B (12) } \\ \hline \end{gathered}$	$\begin{gathered} \text { SB } \\ \text { B (15) } \\ \hline \end{gathered}$	$\begin{gathered} \text { SB } \\ \mathrm{B}(13) \\ \hline \end{gathered}$	$\begin{gathered} \text { SB } \\ \text { B (14) } \\ \hline \end{gathered}$	$\begin{gathered} \text { SB } \\ \text { C (19) } \end{gathered}$	$\begin{gathered} \text { SB } \\ C(17) \end{gathered}$
Prairie St at $14^{\text {th }} \mathrm{St}$	$\begin{gathered} \hline \text { NBL } \\ \mathrm{C}(16) \end{gathered}$	$\begin{gathered} \text { NBL } \\ \text { D (31) } \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(19) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(20) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{~F}(73) \end{gathered}$	$\begin{gathered} \hline \mathrm{NBL} \\ \mathrm{D}(33) \end{gathered}$
$\begin{aligned} & \text { Prairie St at } \\ & 7^{\text {th }} \mathrm{St} \\ & \hline \end{aligned}$	$\begin{gathered} E B \\ D(26) \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \mathrm{D}(27) \end{gathered}$	$\begin{gathered} \text { EB } \\ \mathrm{B}(13) \\ \hline \end{gathered}$	$\begin{gathered} E B \\ E(39) \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ F(82) \end{gathered}$	$\begin{gathered} \text { EB } \\ C(16) \\ \hline \end{gathered}$
$\begin{aligned} & \text { Prairie St at } \\ & 3^{\text {rd }} \mathrm{St} \end{aligned}$	$\begin{gathered} \text { EB } \\ \mathrm{D}(27) \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { E (36) } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { B (14) } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { E (50) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ F(197) \end{gathered}$	$\begin{gathered} \text { WB } \\ C(21) \end{gathered}$
$14^{\text {th }}$ St at Covington Ct	$\begin{gathered} \text { WB } \\ \text { B (12) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { C (17) } \end{gathered}$	$\begin{gathered} \hline \text { WB } \\ \text { B (12) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ B(13) \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ C(19) \end{gathered}$	$\begin{gathered} \text { WB } \\ B(14) \end{gathered}$
$14^{\text {th }}$ St at Vanderbilt Dr	$\begin{gathered} \text { EB } \\ B(11) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \mathrm{B}(12) \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { B (12) } \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { B (12) } \\ \hline \end{gathered}$	$\begin{gathered} \hline E B \\ B(15) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { EB } \\ B(14) \\ \hline \hline \end{gathered}$

Analysis of existing conditions and 2026 Base Year (no development) Traffic shows that the critical movements at the majority of the stop-controlled intersections included in the analysis operate at acceptable LOS D. There are some exceptions described below, which operate below LOS D.

East Mall Entrance at IL Route 38: The northbound approach during the Saturday peak hour currently has an LOS E. Both northbound and southbound are projected to have LOS F in

Page 10

2026, with delays reaching 85 seconds for northbound traffic in the Saturday peak. The delays to the Entrance can be attributed to the large volume of east- and westbound through traffic conflicting with the left turning traffic from the Entrance. The expected 95\% queue approaches 70 feet (almost three vehicles) in 2026.

Prairie Street at 14 ${ }^{\text {th }}$ Street: The northbound left turn movement during the 2026 Base Year PM peak hour is expected to reach LOS F, with delays up to 73 seconds. This delay can be attributed to the northbound left turning traffic having to wait for a sufficient gap in the eastand westbound through traffic. This approach is not expected to have any queuing problems, as the expected 95% queue is only 75 feet (three vehicles) which is well within the provided storage length. Although traffic signal warrants are met under the existing traffic at the intersection, installation of traffic signal control is not recommended at this time. The intersection currently operates satisfactorily under stop sign control. Further, signalization of the intersection could contribute to or create operational problems at Prairie Street and $16^{\text {th }}$ Street, likely due to the resulting eastbound queues. Conversely, it could create gaps for turning traffic to enter Prairie Street by creating platoons and gaps of vehicles on Prairie Street. It is therefore recommended that there be no immediate change made to the intersection traffic control or geometry and that the intersection be monitored periodically as the site is developed, for example after each development phase, to determine the need for any changes in traffic control or geometry. If traffic control changes are to be made in the future, careful attention should be paid to the impacts on the adjacent $16{ }^{\text {th }}$ Street intersection.

Prairie Street at $7^{\text {th }}$ Street: The eastbound and westbound movements are expected to experience LOS E or F during the weekday peaks in 2026, with the highest delay at 82 seconds. This delay can be attributed primarily to the large volume of traffic using Prairie Street during these peak periods. Despite these delays, the analysis results show the intersection approaching capacity in this scenario.

Prairie Street at $3^{\text {rd }}$ Street: The westbound movement during the PM peak hour has an LOS E. In the base year 2026 scenario, that LOS drops to F, while the eastbound approach drops to E in the AM peak. In the 2026 PM peak, the eastbound and southbound movements also drop to LOS F. Delays up to 197 seconds are anticipated. This delay can be attributed primarily to the large volume of traffic using this intersection. The analysis results show the intersection approaching capacity. Even with some capacity at this intersection, attention should be paid to the interaction of traffic here with the intersection of IL Route 31 and Prairie Street. Based on the data, this will be of primary concern for westbound traffic during the PM peak. Queues at this intersection are likely to back into the IL Route 31 intersection. Also, eastbound queues from the IL Route 31 intersection could back into this intersection.

IV. Site Traffic Characteristics of Proposed Development

Proposed Land Uses

The concept plan for the proposed development includes the following uses:

- Residential
- Restaurant
- Retail

The current site plan has a number of restaurants along the IL Route 38 frontage, with some sitdown type restaurants and some fast food. The remainder of the site consists of 16 four-story
buildings. The central ones are planned to be residential consisting of apartments. Those closer to IL Route 38 and to Prairie Street will have apartments on the upper floors, while the ground floor will be retail.

The proposed site will also include the necessary access lanes, parking lots, and landscaped areas required by City ordinances. Access to the site is proposed via the following locations:

- IL Route 38 \& Jewel right-turns-only driveway (existing, near west edge of site)
- IL Route 38 \& West Mall Entrance (existing)
- IL Route 38 \& East Mall Entrance (existing, west of JiffyLube)
- Prairie Street \& West Mall Entrance (existing, behind Jewel)
- Prairie Street \& East Mall Entrance (existing)
- $14^{\text {th }}$ Street \& Vanderbilt Drive (existing indirect access, south of Binny's)

The locations of proposed points of access can be seen on the aerial photo in Exhibit 1B and on the concept plan in Exhibit 2. For traffic projection purposes, it is assumed that traffic signal control will remain at the IL Route 38/West Mall Entrance intersection. All other entrances to the proposed site will be controlled by stop signs on the minor street approaches.

Estimated Site-Generated Traffic

Site-generated traffic was estimated using the ITE's Trip Generation Manual, g'h Edition. The residential units were modeled with ITE Code 220, Apartment. The restaurant units were modeled as a combination of ITE Code 932, High-turnover (Sit-down) Restaurant, and ITE Code 934, Fast-food Restaurant with Drive-through Window. The retail units were modeled with ITE Code 826, Specialty Retail Center, which was determined to be the most appropriate use based on the information provided by the developer. However, there is no trip generation data for the weekday AM peak hour of adjacent street traffic for this use. The trip generation based on the weekday AM peak hour of the generator resulted in volumes that were much higher than seemed reasonable. Therefore, for the weekday AM peak hour trip generation estimates, the retail units were based on ITE Code 820, Shopping Center, weekday AM peak hour of adjacent street traffic. With the final site occupants unknown, it was determined that attempting further detail in land uses would be inappropriate at this time. The proposed land uses and sizes provided by the developer were used to estimate morning, evening, and Saturday peak hour trips to and from the site. The resulting generated traffic is shown in Table 6 below. Also refer to Appendix M for a more detailed breakdown.

Table 6
Trip Generation Table

Land Use	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Units	Qty	AM Peak Hour Volumes (veh/hr)			PM Peak Hour Volumes (veh/hr)			SAT Peak Hour Volumes (veh/hr)		
				In	Out	Total	In	Out	Total	In	Out	Total
Residential	220	DU	609	60	242	302	229	124	353	159	158	317
Retail	826	1000 SF	83	86	53	139	97	124	221	18	17	35
Sit-down Restaurants	932	1000 SF	26	156	127	283	155	103	258	196	173	369
Fast-food	934	1000 SF	7	161	155	316	118	109	227	209	201	410

Source: ITE Trip Generation Manual, g $^{\text {th }}$ Edition
These projected trips have been adjusted for "internal capture" where there is potential for interaction among various uses within the multi-use site, i.e. between residential and restaurant
or between residential and retail. These trips occur entirely within the site and account for a portion of the trips generated by each land use. The capture rate of 15% percent was calculated using the ITE Internal Capture worksheet provided in Chapter 7 of the ITE Trip Generation Handbook. ITE internal capture estimation methods only pertain to PM peak hour scenarios. In order to determine the most accurate rate for AM and Saturday peaks, an internal capture field study would be required. Without conducting an internal capture field study, it is reasonable to apply the PM peak hour rate to all scenarios. A discussion of multi-use developments and internal capture from the ITE Trip Generation Handbook is included in Appendix N to this report for further reference.

The projected trip generation has also been adjusted for pass-by trips. Pass-by trips are those that already exist on the network but make an intermediate stop at the site location. For example, a driver on their way to work may leave their primary route to buy a cup of coffee and then re-enter their route at the same location. This would add turning movements to the intersection by diverting pre-existing main street through movements. A visual representation of this is provided in Exhibit 5. In the St. Charles Prairie Centre case, pass-by trip generation would not apply to the residential uses. A 5\% pass-by rate was applied to the retail and restaurant uses. A higher pass-by rate would be reasonable given the proposed site uses, but IDOT limits the amount of internal capture and pass-by rates to a combined 20\%. The resulting trip generation, in terms of its impact to the external intersections, is therefore conservatively high. It was determined that pass-by trips would most likely utilize primarily the West Mall Entrance on IL Route 38. The pass-by trip adjustment is provided in Exhibit 6. In Table 7, a summary is given of the total new trips generated after the internal capture and pass-by adjustments.

Table 7
Total New Trips after all Adjustments in veh/hr

Peak Hour	In	Out	Total
Weekday AM	377	476	853
Weekday PM	493	377	870
Saturday	477	450	927

Source: ITE Trip Generation Manual, ght $^{\text {th }}$ Edition

Estimated Trip Distribution

The direction by which traffic will approach and depart the site is dependent on a variety of factors. These factors include existing travel patterns, characteristics and operating conditions of the surrounding roadways, ease of access, location of population and employment centers, and locations of similar competing uses. Based on these factors and a familiarity with the sites and the environs, trip distribution estimates were developed and are presented on Exhibit 7. Separate distribution factors were used for residential, office, and commercial trips, which are reflected in the exhibit. In that exhibit, the Commercial rates provided apply to the restaurant and retail uses. Note that the Commercial rates also apply to the CVS Pharmacy use and its outlots in the development of the 2026 Base Year Traffic.

Site Traffic Assignments

The estimated site-generated traffic volumes from the proposed development were assigned to the area roadway system based on the directional distribution identified above and on Exhibit 7. These volumes are the adjusted volumes, having removed internally captured trips and pass-by
trips, only leaving primary trips to and from the St. Charles Prairie Centre. The primary trip assignments for the proposed Prairie Centre development are illustrated on Exhibit 8 in Appendix A. The trip assignments presented on Exhibit 8 do not reflect assignment of the offsite development generated traffic from the CVS Pharmacy and its outlots described previously. These trips were included in the 2026 Base Year Traffic.

Total Traffic Assignments

The development's generated site traffic assignment was then combined with the pass-by traffic and the 2026 Base Year projected traffic to develop a Total Traffic Assignment, shown on Exhibit 9 in Appendix A.

V. Future Traffic Operations

Traffic Operations
Capacity analyses were conducted based on the traffic volumes estimated for the projected traffic assignments at the 16 intersections included in this study. Traffic signal warrant evaluation is discussed later in the report. There are several geometric improvements already included in these analyses. These improvements are those proposed at the entrances as shown on the developer's current concept plan. These improvements include reconstruction of the exit approaches to add or better demarcate turn lanes. The West Mall Entrance at IL Route 38 will have an exclusive left turn lane, an exclusive through lane, and an exclusive right turn lane on the exiting approach. At the East Mall Entrance on IL Route 38, the exiting approach will consist of an exclusive left turn lane and a shared through/right turn lane. The exiting approach of the East Mall Entrance on Prairie Street will have an exclusive left turn lane and an exclusive right turn lane. The lane configurations used in the 2026 Total Traffic analysis can be seen in Exhibit 10 in Appendix A.

For the analysis of 2026 Total Traffic conditions, no other geometric improvements were assumed. However, the signal timing plans were optimized for the anticipated traffic levels. There was one significant change recommended for this scenario. The existing northbound and southbound left turn phasing at the West Mall Entrance on IL Route 38 is permissive only. That is, left turns from the entrance approaches are currently only permitted with the green ball. Under the 2026 Total Traffic, it is recommended that exclusive left turn phase be added to these movements, converting them to protected/permitted left turns. Under protected/permitted operations, left turns are protected by left turn arrows for a portion of the cycle and then are permitted concurrently with the adjacent green ball during another portion of the cycle. Additionally, the analyses allowed for various lead/lag operations at Randall Road and Prairie Street. This intersection is owned by Kane County, and the signals have 4-section Flashing Yellow Arrow operation for all of the left turns, which enables a lot of flexibility. This flexibility in operation was not assumed at any of the IL Route 38 intersections because IDOT has been very hesitant to adopt such signal improvements and operations. Table 8 presents the results of the capacity analyses and provides a comparison to the year 2026 Base Year (no development) Traffic discussed earlier in this report. Synchro reports are also included in Appendices G and H for the 2026 Total Traffic with and without changes to the system.

Table 8
Summary of Base Year (no development) and Total (with site) Traffic Conditions Intersection Level of Service (LOS) and Delay (seconds)

Signalized Intersections

Intersection	Base Year 2026 Traffic (no site)			2026 Total Traffic (with site)		
	AM Peak	PM Peak	Sat Peak	AM Peak	PM Peak	Sat Peak
IL 38/ Randall Rd	D (40)	D (49)	D (45)	D (41)	D (52)	D (39)
IL 38/ West Mall Entrance	A (6)	A (8)	A (7)	A (8)	B (12)	B (17)
IL 38/ 14 ${ }^{\text {th }}$ St	C (24)	D (37)	C (31)	B (19)	C (34)	C (32)
Prairie St/ Randall Rd	B (12)	D (42)	D (44)	B (12)	D (46)	E (56)

Note that when traffic growth occurs and signal timings are re-optimized to favor the highervolume arterial street traffic, the over-all intersection delay may reduce, even though delays for some minor street movements will increase. Some individual movements have LOS E or F. Table 9 shows a detailed breakdown of individual movements for the 2026 Total Traffic.

Table 9
LOS \& Delay by Movement for 2026 Total Traffic with Improvements

Intersection	Peak Hour		LOS \& (delay) by Movement											
			Eastbound			Westbound			Northbound			Southbound		
			L	T	R	L	T	R	L	T	R	L	T	R
 Randall Rd	AM	D (41)	E (61)	$\begin{gathered} \text { E } \\ (54) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0) \\ \hline \end{gathered}$	$\begin{gathered} \hline E \\ (62) \end{gathered}$	$\begin{gathered} \text { D } \\ (51) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (61) \end{gathered}$	$\begin{gathered} \hline \text { D } \\ (42) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} E \\ (74) \\ \hline \end{gathered}$	$\begin{gathered} C \\ (26) \\ \hline \end{gathered}$	A (4)
	PM	D (52)	$\begin{gathered} \text { F } \\ (101) \end{gathered}$	$\begin{gathered} \hline D \\ (49) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (62) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (61) \end{gathered}$	$\begin{gathered} \text { D } \\ (38) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline E \\ (62) \\ \hline \end{array}$	$\begin{gathered} \mathrm{E} \\ (79) \end{gathered}$	A (8)	$\begin{gathered} \mathrm{F} \\ (86) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (21) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (7) } \\ \hline \end{gathered}$
	Sat	D (39)	$\begin{gathered} \hline \text { D } \\ (50) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (74) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (13) \end{gathered}$	$\begin{gathered} \text { D } \\ (48) \end{gathered}$	$\begin{gathered} E \\ (55) \end{gathered}$	$\begin{gathered} \text { D } \\ (48) \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (18) \end{gathered}$	$\begin{gathered} \text { D } \\ (40) \end{gathered}$	A (8)	$\begin{gathered} \text { D } \\ (50) \end{gathered}$	$\begin{gathered} \text { C } \\ (28) \end{gathered}$	A (4)
 W Mall Entrance	AM	A (8)	A (2)	A (3)		A (5)	A (9)		$\begin{array}{\|c\|} \hline D \\ (38) \\ \hline \end{array}$	B (18)		$\begin{gathered} \text { D } \\ (43) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D } \\ (47) \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ (14) \\ \hline \end{gathered}$
	PM	B (12)	$\begin{gathered} \hline \mathrm{B} \\ (15) \end{gathered}$	B(15)		A (2)	A (7)		$\begin{gathered} \hline D \\ (40) \end{gathered}$	B (17)		$\begin{gathered} \hline D \\ (42) \end{gathered}$	$\begin{gathered} \text { D } \\ (49) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (16) \end{gathered}$
	Sat	B (17)	$\begin{gathered} \text { B } \\ (16) \end{gathered}$	C (23)		A (3)	A (6)		$\begin{gathered} \hline \text { D } \\ (50) \end{gathered}$	B (19)		$\begin{gathered} \text { D } \\ (54) \end{gathered}$	$\begin{gathered} E \\ (59) \end{gathered}$	$\begin{gathered} B \\ (16) \end{gathered}$
$\begin{aligned} & \text { IL } 38 \text { \& } \\ & 14^{\text {th }} \mathrm{St} \end{aligned}$	AM	B (19)	A (4)	A (8)		$\begin{gathered} \hline \text { B } \\ (15) \\ \hline \end{gathered}$	B (19)		$\begin{array}{\|c\|} \hline C \\ (25) \\ \hline \end{array}$	D (45)		$\begin{gathered} \text { D } \\ (35) \\ \hline \end{gathered}$	C (35)	
	PM	C (34)	$\begin{gathered} \hline \text { D } \\ (40) \\ \hline \end{gathered}$	B (19)		$\begin{gathered} \text { C } \\ (23) \end{gathered}$	C (35)		$\begin{array}{\|c} \hline \text { C } \\ (25) \\ \hline \end{array}$	E (59)		$\begin{gathered} \hline D \\ (45) \\ \hline \end{gathered}$	D (41)	
	Sat	C (32)	A (9)	B (19)		$\begin{gathered} \mathrm{C} \\ (30) \end{gathered}$	C (29)		$\begin{gathered} \mathrm{C} \\ (28) \end{gathered}$	E (60)		$\begin{gathered} \text { D } \\ (46) \end{gathered}$	D (42)	
Prairie St \& Randall Rd	AM	B (12)	$\begin{gathered} \text { D } \\ (39) \\ \hline \end{gathered}$	C (30)		$\begin{gathered} \mathrm{E} \\ (65) \end{gathered}$	$\begin{gathered} \hline D \\ (48) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (16) \end{gathered}$	A (2)	A (5)		$\begin{gathered} C \\ (29) \end{gathered}$	B (11)	
	PM	D (46)	$\begin{gathered} \text { D } \\ (44) \end{gathered}$	D (43)		$\begin{gathered} \text { F } \\ (130) \end{gathered}$	$\begin{gathered} E \\ (55) \end{gathered}$	$\begin{gathered} \text { C } \\ (29) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (22) \end{gathered}$	D (55)		$\begin{gathered} \text { F } \\ (81) \end{gathered}$	C (22)	
	Sat	E (56)	$\begin{gathered} \text { D } \\ (51) \\ \hline \end{gathered}$	$F(83)$		$\begin{gathered} F \\ (137) \\ \hline \end{gathered}$	$\begin{gathered} E \\ (63) \\ \hline \end{gathered}$	$\begin{gathered} \text { E } \\ (58) \\ \hline \end{gathered}$	$\begin{gathered} C \\ (24) \\ \hline \end{gathered}$	E (60)		$\begin{gathered} \text { F } \\ (117) \\ \hline \end{gathered}$	C (32)	

Analysis of the 2026 Total Traffic shows the following results:
IL Route 38 and Randall Road: With projected 2026 Total Traffic and re-optimized signal timings, this intersection operates at an over-all Level of Service D, although some individual movements will operate at LOS E or F during peak times. There is a general increase in delay when compared to the 2026 Base Year Traffic, which would be expected due to the additional traffic. Vehicle queues do not exceed turn lane storage lengths, although throughlane queues will occasionally extend beyond the turn lane tapers, periodically blocking entry by turning vehicles until through traffic moves up. Traffic volumes will not exceed the capacity of the intersection, though several movements do approach capacity. This analysis is very similar to both the existing conditions and the 2026 Base Year conditions, in which the intersection also approaches capacity. Virtually all of the potential improvements that could be reasonably considered have already been implemented at this intersection. Additional capacity was already recognized by Kane County as a need for Randall Road, hence the projected widening of Randall Road, which is discussed later in this report. Widening of IL Route 38 could similarly have beneficial impacts on operation.

IL Route 38 and the West Mall Entrance: With the projected 2026 Total Traffic and reoptimized signal timings, as well as the additional northbound and southbound left turn phases, this intersection operates at an overall LOS B during the PM and Saturday peaks. Drivers on the proposed site roadway approaches may experience delays in the range of LOS D or even E. Left turn queues are expected to reach six to seven vehicles. Currently, IL Route 38 traffic is assigned about 75% of the available green time, which can be expected in the future, since these signals are controlled by IDOT. Traffic volumes are not expected to exceed the capacity of the intersection under 2026 Total Traffic conditions.

IL Route 38 and $14^{\text {th }}$ Street: With the projected 2026 Total Traffic and re-optimized signal timings, the intersection is expected to experience similar delays to those in the 2026 Base Year analysis, with different movements showing either slightly higher or slightly lower delay. The overall LOS is expected to be C or better. Analysis of 2026 Total Traffic shows that projected traffic will not exceed the capacity of the intersection.

Prairie Street and Randall Road: Analysis of 2026 Total Traffic with signal timings reoptimized and variable left turn phasing shows that the over-all Level of Service at this intersection will be B to E. The queue of westbound left turning traffic will continue to overflow the westbound left turn lane frequently during peak times. This movement will operate at LOS F during the PM and Saturday peaks. The queue of southbound left turning traffic during the PM and Saturday peak hours can also be expected to overflow the left turn lane with vehicle queues of 10 to 15 cars. This movement will operate at LOS F during the AM and Saturday peaks. As previously noted, green time for Prairie Street will continue to be limited by the need to provide adequate time for the large volume of traffic flowing on Randall Road and to keep these movements coordinated with the nearby IL Route 38/Randall Road intersection to the south. Further, the northbound through queue can be expected to spill back into the Randall Road/IL Route 38 intersection in the PM and Saturday peaks. This intersection, similar to the existing and 2026 Base Year Traffic, is expected to operate at or near capacity in peak periods. As mentioned under the Base Year analysis, the best solution is to execute the planned widening of Randall Road. The widening of Randall Road is described in greater detail later in the report. Alternative improvements could include extending turn lanes, adding right turn lanes, or reconfiguring the driveways on

Page 16

Prairie Street east of Randall Road to reduce their potential interaction with the intersection, which is also discussed under the Base Year analysis.

In summary, the two Randall Road intersections are currently experiencing capacity issues, which are expected to continue into the future. The addition of traffic from new developments in the area will exacerbate these conditions. Optimizing the traffic signals and changing the order of phase operations can help significantly. Further improvements are needed to address what is an existing issue. Conversely, the other two signalized intersections studied are expected to continue to operate under capacity with relatively minimal changes, namely the addition of the left turn phases at the West Mall Entrance.

Table 10 shows a summary of analysis results for stop sign controlled intersections under 2026 Total Traffic. As noted before, capacity analyses of stop sign controlled intersections provide Levels of Service and delays for individual intersection movements, but not the intersection as a whole. Results for the most critical movement at each intersection are shown in Table 10.

Table 10
Summary of Base Year (no development) and Total (with site) Traffic Conditions Level of Service (LOS) and Delay (seconds)

Stop Sign Controlled Intersections

Critical Movement	Base Year 2026 Traffic (no site)			2026 Total Traffic (with site)		
	AM Peak	PM Peak	Sat Peak	AM Peak	PM Peak	Sat Peak
East Mall Entrance at IL 38	$\begin{gathered} \mathrm{NB} \\ \mathrm{C}(23) \end{gathered}$	$\begin{gathered} \hline \text { SB } \\ F(62) \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~F}(85) \end{gathered}$	$\begin{gathered} \hline \text { SBL } \\ \text { E (41) } \end{gathered}$	$\begin{gathered} \hline \text { SBL } \\ F(162) \end{gathered}$	$\begin{gathered} \hline N B \\ F(162) \end{gathered}$
Prairie St at West Mall Ent	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(11) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(13) \\ \hline \end{gathered}$	$\begin{gathered} \text { NB } \\ \text { B (11) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(14) \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{C}(18) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NB} \\ \mathrm{~B}(15) \\ \hline \end{gathered}$
Prairie St at East Mall Entrance	$\begin{gathered} \mathrm{NBL} \\ \mathrm{~B}(15) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(19) \end{gathered}$	$\begin{gathered} \text { NBL } \\ \text { C (16) } \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(22) \end{gathered}$	$\begin{gathered} \text { NBL } \\ \text { D (33) } \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(25) \end{gathered}$
$\begin{aligned} & \text { Prairie St at } \\ & 16^{\text {th }} \mathrm{St} \end{aligned}$	$\begin{gathered} \text { SB } \\ B(14) \end{gathered}$	$\begin{gathered} \text { SB } \\ \text { C (19) } \end{gathered}$	$\begin{gathered} \text { SB } \\ C(17) \end{gathered}$	$\begin{gathered} \text { SB } \\ C(16) \end{gathered}$	$\begin{gathered} \text { SB } \\ C(23) \end{gathered}$	$\begin{gathered} \text { SB } \\ C(21) \end{gathered}$
Prairie St at $14^{\text {th }} \mathrm{St}$	$\begin{gathered} \hline \text { NBL } \\ C(20) \end{gathered}$	$\begin{gathered} \hline \text { NBL } \\ \mathrm{F}(73) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{D}(33) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{C}(25) \end{gathered}$	$\begin{gathered} \mathrm{NBL} \\ \mathrm{~F}(111) \end{gathered}$	$\begin{gathered} \hline \text { NBL } \\ \mathrm{E}(44) \end{gathered}$
Prairie St at $7^{\text {th }}$ St	$\begin{gathered} E B \\ E(39) \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ F(82) \end{gathered}$	$\begin{gathered} \text { EB } \\ C(16) \end{gathered}$	$\begin{gathered} E B \\ F(79) \end{gathered}$	$\begin{gathered} \text { WB } \\ F(129) \end{gathered}$	$\begin{gathered} E B \\ C(23) \\ \hline \end{gathered}$
$\begin{array}{\|l} \hline \text { Prairie St at } \\ 3^{\text {rd }} \mathrm{St} \end{array}$	$\begin{gathered} \text { EB } \\ \text { E (50) } \end{gathered}$	$\begin{gathered} \text { WB } \\ F(197) \\ \hline \end{gathered}$	$\begin{aligned} & \text { WB } \\ & \text { C (21) } \end{aligned}$	$\begin{gathered} \text { EB } \\ F(86) \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { F (235) } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { D (30) } \end{gathered}$
$14^{\text {th }}$ St at Covington Ct	$\begin{gathered} \text { WB } \\ B(13) \end{gathered}$	$\begin{gathered} \text { WB } \\ C(19) \end{gathered}$	$\begin{gathered} \text { WB } \\ B(14) \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { B (13) } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { C (20) } \end{gathered}$	$\begin{gathered} \text { WB } \\ B(14) \end{gathered}$
$14^{\text {th }}$ St at Vanderbilt Dr	$\begin{gathered} \text { EB } \\ \text { B (12) } \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ B(15) \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { B (14) } \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ B(11) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{EB} \\ \mathrm{~B}(15) \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { B (14) } \\ \hline \end{gathered}$

Analysis of 2026 Total Traffic shows that critical movements at the stop-controlled intersections included in the analysis operate in range of Level of Service from B to F. Below is a description of the intersections not meeting LOS D or better. See also Exhibit 12 for queue comparisons.

East Mall Entrance at IL Route 38: The southbound left turn movement is expected to operate at LOS F during the PM and Saturday peak hours. However, the vehicle queues are only anticipated to reach two cars, and the analyses show the intersection having reached

Page 17
only about half its capacity. The large delay is caused by the large volume of through traffic on IL Route 38. There will be very few acceptable gaps for left turning vehicles to utilize. Further geometric improvements will not significantly affect the delay. Signalization is not appropriate to consider, as IDOT would not allow it due to the close spacing of existing signalized intersections nearby. No improvements are recommended.
$14^{\text {th }}$ Street at Prairie Street: The northbound left turn movement is expected to operate at a LOS E during the Saturday peak hour and F during the PM peak hour. Vehicle queues are not expected to grow by more than one vehicle. However, a left turning vehicle may be delayed an extended period of time waiting for a sufficient gap in traffic. The analysis results also show plenty of remaining capacity at this intersection. No improvements are recommended. See the Base Year analysis for a discussion of signalization.

Prairie Street at $7^{\text {th }}$ Street: This intersection is expected to exceed capacity with the addition of 2026 Total Traffic volumes. Both the east- and westbound movements at this intersection are expected to see LOS F during the AM and PM peak hours. This delay is caused by the large volume of vehicles making a stop at this intersection. According to the analysis results, the intersection has not reached capacity. No improvements are recommended.

Prairie Street at 3 ${ }^{\text {rd }}$ Street: This intersection is expected to be near capacity in the PM peak hour with the addition of 2026 Total Traffic volumes. Several movements at this intersection are expected to reach LOS F during the peak hour. This delay is caused by the large volume of vehicles proceeding through this intersection. As described previously, the interaction between this intersection and the nearby signalized intersection of IL Route 31 and Prairie Street may need some attention. No mitigation is recommended.

Randall Road Widening

Kane County has completed a Phase I engineering study and design to widen Randall Road to provide six through-traffic lanes from north of IL Route 64 to south of Bricher Road. The first stage of this project was constructed in 2007, widening Randall Road from north of IL Route 64 south to Oak Street. The widening of Randall Road from Oak Street through the IL Route 38 intersection is planned as Stage 2 of the improvement. Construction is not currently programmed while the County seeks funding for the work.

If the Randall Road improvement is constructed by 2026, which can be reasonably anticipated, it will benefit traffic flow not only on Randall Road, but also on intersecting routes such as IL Route 38 and Prairie Street. Analysis of the peak hours at Randall Road intersections with six lanes on Randall Road is expected to show that the added capacity will reduce delays and shorten vehicle queues on all approaches at both intersections. Table 11 presents the results of the capacity analyses and provides a comparison to the year 2026 Total Year (with site) Traffic discussed earlier in this report. For the analyses shown, the only improvements assumed were the same as described in the previous section plus the widening of Randall Road from four to six lanes. As before, the phase order at Randall Road and Prairie Street was allowed to change by time of day. Synchro reports are also included in Appendix I.

Note at Randall Road and Prairie Street, the northbound and southbound left turn movements have been evaluated with protected-only phasing, meaning turns are only allowed on a green arrow. This is required because IDOT does not allow permissive phasing across three opposing through lanes.

Table 11
Summary of Total (with site) and Total (with site) with Randall Widening Traffic Conditions Intersection Level of Service (LOS) and Delay (seconds)

Signalized Intersections

Intersection	2026 Total $\begin{gathered}\text { Year Traffic (with } \\ \text { site) }\end{gathered}$			2026 Total Traffic (with site) with Randall Road Widening		
	AM Peak	PM Peak	Sat Peak	AM Peak	PM Peak	Sat Peak
IL 38/ Randall Rd	D (41)	D (52)	D (39)	C (32)	D (35)	C (27)
IL 38/ West Mall Entrance	A (8)	B (12)	B (17)	B (11)	B (12)	B (13)
IL 38/ 14 ${ }^{\text {th }}$ St	B (19)	C (34)	C (32)	B (19)	C (35)	C (31)
Prairie St/ Randall Rd	B (12)	D (46)	E (56)	B (12)	C (28)	C (30)

Note that with the widening of Randall Road assumed and signal timings re-optimized to favor the higher-volume arterial street traffic, the over-all intersection delay may reduce, even though delays for some minor street movements will increase. Some individual movements have LOS E or F. Table 12 shows a detailed breakdown of individual movements for the 2026 Total Traffic with Randall Road widening.

Table 12
LOS \& Delay by Movement for 2026 Total Traffic with Improvements and Randall Widening

Intersection	Peak Hour	Overall LOS \& (delay)	LOS \& (delay) by Movement											
			Eastbound			Westbound			Northbound			Southbound		
			L	T	R	L	T	R	L	T	R	L	T	R
 Randall Rd	AM	C (32)	D (51)	$\begin{gathered} \text { D } \\ (42) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A } \\ (0) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (47) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (38) \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (48) \end{gathered}$	$\begin{gathered} C \\ (34) \\ \hline \end{gathered}$	A (4)	$\begin{gathered} \mathrm{E} \\ (63) \end{gathered}$	$\begin{gathered} \hline B \\ (19) \\ \hline \end{gathered}$	A (2)
	PM	D (35)	$\begin{gathered} \mathrm{E} \\ (68) \end{gathered}$	$\begin{gathered} \hline D \\ (45) \end{gathered}$	$\begin{gathered} \text { A } \\ (4) \end{gathered}$	$\begin{gathered} \hline D \\ (48) \end{gathered}$	$\begin{gathered} \hline D \\ (44) \end{gathered}$	$\begin{gathered} \text { C } \\ (32) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (62) \end{gathered}$	$\begin{gathered} \text { D } \\ (39) \end{gathered}$	A (7)	$\begin{gathered} \mathrm{E} \\ (62) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (18) \end{gathered}$	A (8)
	Sat	C (27)	$\begin{gathered} \text { C } \\ (34) \end{gathered}$	$\begin{gathered} \text { D } \\ (53) \end{gathered}$	$\begin{gathered} \text { A } \\ (8) \end{gathered}$	$\begin{gathered} \text { C } \\ (27) \end{gathered}$	$\begin{gathered} \text { D } \\ (42) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (34) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (16) \end{gathered}$	$\begin{gathered} \text { C } \\ (33) \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (8) } \end{gathered}$	$\begin{gathered} C \\ (30) \\ \hline \end{gathered}$	$\begin{gathered} B \\ (15) \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (5) } \end{gathered}$
 W Mall Entrance	AM	B (11)	A (2)	A (6)		$\begin{gathered} \text { B } \\ (10) \\ \hline \end{gathered}$	B (19)		$\begin{gathered} \mathrm{C} \\ (29) \end{gathered}$	B (15)		$\begin{gathered} \text { C } \\ (32) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (38) \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ (11) \\ \hline \end{gathered}$
	PM	B (12)	$\begin{gathered} \mathrm{B} \\ (17) \\ \hline \end{gathered}$	B(15)		A (2)	A (6)		$\begin{gathered} \hline D \\ (40) \end{gathered}$	B (17)		$\begin{gathered} \hline D \\ (42) \end{gathered}$	$\begin{gathered} \text { D } \\ (49) \end{gathered}$	$\begin{gathered} B \\ B \\ (16) \end{gathered}$
	Sat	B (14)	A (9)	B (14)		A (4)	A (8)		$\begin{array}{\|c} \hline \mathrm{D} \\ (40) \\ \hline \end{array}$	B (17)		$\begin{gathered} \mathrm{D} \\ (44) \end{gathered}$	$\begin{gathered} \text { D } \\ (49) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (16) \end{gathered}$
$\begin{aligned} & \text { IL } 38 \text { \& } \\ & 14^{\text {th }} \mathrm{St} \end{aligned}$	AM	B (19)	A (6)	B (12)		$\begin{gathered} \text { B } \\ (15) \end{gathered}$	B (20)		$\begin{array}{\|c\|} \hline C \\ (20) \\ \hline \end{array}$	D (37)		$\begin{gathered} C \\ (27) \end{gathered}$	C (27)	
	PM	C (35)	$\begin{gathered} \text { D } \\ (40) \end{gathered}$	C (22)		$\begin{gathered} \text { C } \\ (23) \end{gathered}$	C (35)		$\begin{gathered} C \\ (25) \end{gathered}$	E (59)		$\begin{gathered} \text { D } \\ (45) \end{gathered}$	D (41)	
	Sat	C (31)	A (9)	C (23)		$\begin{gathered} \text { C } \\ (31) \end{gathered}$	C (27)		$\begin{gathered} \text { C } \\ (24) \end{gathered}$	D (53)		$\begin{gathered} \text { D } \\ (39) \end{gathered}$	D (37)	
Prairie St \& Randall Rd	AM	B (12)	$\begin{gathered} \text { C } \\ (30) \\ \hline \end{gathered}$	C (25)		$\begin{gathered} \text { D } \\ (51) \end{gathered}$	$\begin{gathered} \hline D \\ (39) \end{gathered}$	A (6)	$\begin{gathered} \text { C } \\ (29) \\ \hline \end{gathered}$	A (6)		$\begin{gathered} E \\ (55) \end{gathered}$	B (10)	
	PM	C (28)	$\begin{gathered} D \\ (38) \\ \hline \end{gathered}$	D (40)		$\begin{gathered} \mathrm{E} \\ (67) \end{gathered}$	$\begin{gathered} \hline D \\ (47) \end{gathered}$	$\begin{gathered} \text { C } \\ (20) \end{gathered}$	$\begin{gathered} \hline D \\ (50) \\ \hline \end{gathered}$	C (22)		$\begin{gathered} \mathrm{E} \\ (77) \end{gathered}$	B (20)	
	Sat	C (30)	$\begin{gathered} D \\ (40) \end{gathered}$	D (52)		$\begin{gathered} E \\ (74) \end{gathered}$	$\begin{gathered} \hline D \\ (50) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (26) \\ \hline \end{gathered}$	$\begin{gathered} \hline D \\ (51) \\ \hline \end{gathered}$	C (24)		$\begin{gathered} \mathrm{F} \\ (87) \end{gathered}$	C (20)	

If the proposed add-lanes improvement to Randall Road is in place by 2026, delays and queues are expected to be significantly reduced. This improvement is particularly necessary to alleviate the spillback concerns on Randall Road between IL Route 38 and Prairie Street. Note however, there will still be queuing concerns for the southbound and westbound left turn lanes at Randall Road and Prairie Street. This is due to the requirement to use protected-only phasing for the northbound and southbound left turns. Permissive phasing would help reduce the expected queues but would need to be studied carefully and would require obtaining concurrence from IDOT.

Traffic Signal Warrants

Traffic Signal Warrants were analyzed at three intersections with this study. Traffic Signal Warrants are analytical tools outlined in Part 4C of the Manual on Uniform Traffic Control Devices (MUTCD) published by the Federal Highway Administration (FHWA). The MUTCD outlines nine warrants dealing with various factors in the need for traffic signals, such as traffic volumes, pedestrian activity, school crossings, railroad crossings, etc. It is important to understand that meeting at least one traffic signal warrant is necessary before traffic signals should be installed at an intersection. However, meeting a traffic signal warrant does not require an agency to install traffic signals at an intersection. Often, traffic signals are not the best solution to handling traffic, even where warrants are met.

For the analyses provided, 13-hour traffic count data was collected. For analyses of the existing traffic, all count data was able to be used. For future years, projection of traffic volume counts is only reasonable for the peak hour volumes. Therefore, analysis of Warrant 1, Eight-hour Vehicular Volume, is limited to what can be estimated. The eighth-highest hour of traffic volume can be estimated as 55% of the peak hour volume. This rule of thumb is an industry practice and is used by IDOT in their Signal Warrant analyses (IDOT BDE Manual, 2002 Ed., p. 14-3(3), item 4c. Proposed Volumes). Caution needs to be applied when using the 55% estimate of eighth-highest hourly volumes to evaluate Warrant 1. Similarly, Warrant 2, Four-hour Vehicular Volume, is even more difficult to analyze. There is no accepted method to estimate the fourthhighest hourly volume in the absence of actual traffic count data. Subsequently, where the estimated eighth-highest hourly volume satisfies Warrant 2, it could be reasonably assumed the warrant is met. However, if the peak hour volumes meet it but the eighth-highest hourly volume does not, no conclusion can be drawn regarding Warrant 2.

Prairie Street \& $14^{\text {th }}$ Street: Traffic Signal Warrant 1A, Minimum Vehicular Volumes, has been met by existing traffic volumes at this intersection. This means that, for at least eight hours of the day, the traffic counted at this intersection exceeded the thresholds outlined in the MUTCD. Traffic Signal Warrant 3, Peak Hour, also has been met with existing traffic volumes. Additional warrants are anticipated to be met by future traffic volumes. However, despite delays to the northbound left turn, the capacity analyses show remaining capacity in the operations and short queue lengths under all scenarios studied. Installation of traffic signal control is not recommended at this time.

Prairie Street \& $7^{\text {th }}$ Street: Traffic Signal Warrant 2, Four-hour Vehicular Volume, has been met by existing traffic volumes at this intersection. This means that, for at least four hours of the day, the traffic counted at this intersection exceeded the thresholds outlined in the MUTCD. Additional warrants are anticipated to be met by future traffic volumes. Traffic operations at this intersection are at or near capacity with or without the site traffic added. Note also the distance of the intersection from the site, which makes it difficult to assign
impact from the site to this intersection relative to existing traffic and surrounding traffic generators. Installation of traffic signals at this intersection could potentially improve operations, although this and other remedies have not been studied in detail. Installation of traffic signal control or other mitigation techniques are not recommended at this time.

Prairie Street \& 3 ${ }^{\text {rd }}$ Street: Traffic Signal Warrant 2, Four-hour Vehicular Volume, has been met by existing traffic volumes at this intersection. This means that, for at least four hours of the day, the traffic counted at this intersection exceeded the thresholds outlined in the MUTCD. Additional warrants are anticipated to be met by future traffic volumes. Traffic operations at this intersection are at or near capacity with or without the site traffic added. Note also the distance of the intersection from the site, which makes it difficult to assign impact from the site to this intersection relative to existing traffic and surrounding traffic generators. Installation of traffic signals at this intersection could potentially improve operations, although this and other remedies have not been studied in detail. Installation of traffic signal control or other mitigation techniques are not recommended at this time.

VI. Additional Considerations

Cut Through Routes

Some concerns have been raised about the existing use of neighborhood residential streets by cut-through traffic. These streets include $7^{\text {th }}$ Street, $12^{\text {th }}$ Street, $13^{\text {th }}$ Street, $14^{\text {th }}$ Street, $16^{\text {th }}$ Street and Oak Street. Seventh, $12^{\text {th }}$, and Oak Streets adjoin schools and are school traffic routes. Seventh and Oak Streets, along with Prairie Street, are designated as collector streets in the City's Comprehensive Plan. Concerns have also been raised about the potential for increased use of these streets by cut-through traffic with the development of the Prairie Centre site and the additional traffic it will generate.

A study and analysis that would quantify the existing volumes of cut-through traffic on surrounding west-side neighborhood streets would be an undertaking that requires a significant investment of time and manpower. Due to the variable nature of this driver behavior, a prediction of any future increase in cut-through traffic on individual streets could only be very roughly estimated. Any recommendations to discourage or impede cut-through traffic on an individual street would need to be carefully considered, as this often results in traffic diverting to the nearest adjacent street. Following a discussion of this with City staff, HLR was directed to not undertake a formal engineering study of cut-through traffic, but to instead provide an overview of the potential cause and remedy for this situation.

Drivers typically use side streets as cut-through routes to avoid traffic congestion along an otherwise desired route. If traffic is flowing smoothly, drivers are more likely to stay on the through street. During peak traffic periods, Prairie Street now experiences some congestion at its all-way stop intersections at $7^{\text {th }}$ and $3^{\text {rd }}$ Streets. Traffic volumes at these intersections do meet traffic signal warrants without the addition of the Prairie Centre development.

If congestion is not alleviated on the main collector route (such as Prairie Street), measures taken to discourage or block through traffic on individual side streets often result in traffic rerouting to the next adjacent street. If the $3^{\text {rd }}$ Street and $7^{\text {th }}$ Street intersections remain under all-way stop control, peak hour delays and the lengths of lines of traffic will increase, further encouraging drivers to seek alternate routes down other streets. If both intersections are signalized and are under coordinated control with each other and with Prairie Street at IL Route

31, delays and congestion will be significantly reduced. This will reduce the desirability of using cut-through routes down side streets, drawing those drivers back to Prairie Street, the main collector route.

Traffic Calming

Traffic should continue to be monitored on the surrounding street network for issues that may require traffic calming. Should measures be required, the City of St. Charles has a traffic calming policy that should be followed.

The developer has many features planned to be incorporated into the site plan that will have traffic calming benefits for the on-site traffic circulation. The following list enumerates some of the planned traffic calming features and other design features that will have some traffic calming effects:

- Central, circular, landscaped island/traffic circle on the main driveway
- Narrow vehicle lanes
- Brick crosswalks
- Corner bump-outs
- On-street parking
- Non-continuous vehicle routes through the site

On-site Traffic Circulation

A detailed review of the site plan should be conducted by City staff and by the Fire Department to ensure that adequate access is provided for emergency vehicles throughout the site. When geometric plans for the access lanes within the site are finalized, they should be reviewed for access by the largest St. Charles Fire Department truck, which can be approximated with a WB50 turning template. Locations of trash collection areas and standing/parking areas for service and delivery vehicles should also be reviewed to ensure that these operations do not block traffic circulation. Truck access to the Jewel store west of the site will be modified or affected by the development of the Prairie Centre site. Care should also be taken in the site design to ensure that the trucks have a viable route in and out of the site. Finally, the site plan should provide for sufficient lane widths throughout the site, particularly at locations where it can be expected that traffic will need to go around stopped or standing vehicles in loading zones, etc.

Many of the traffic calming features described above also have, or primarily have, benefits for pedestrian traffic. Considering the nature of the development and the surrounding residential areas, the site design should include safe and efficient pathways for pedestrian use. The current preliminary site plan appears to make safe pedestrian access a priority. As the site plan develops further, it should be reviewed by City staff to ensure that safe and efficient pedestrian routing is provided.

Finally, it should be noted that, even with installation of the pedestrian features previously described, and considering the relatively dense nature of the development, it is unlikely that the Prairie Centre site will generate significant pedestrian traffic that would cross IL Route 38. Adjacent to the site, IL Route 38 is a five-lane arterial maintained by IDOT. Due to the width of the street and the volume of traffic on IL Route 38, it would be difficult for pedestrians to cross and feel safe. Further, with this site being located in a northern climate, user habits will tend toward moving the vehicle for each stop, especially when crossing to sites on the opposite side of IL Route 38.

Alternate Development Ideas

As a point of reference, this section discusses some potential alternatives for development of the Prairie Centre site. Comparisons of estimated generated traffic from two alternatives to the generated traffic presented in this study are summarized in this section. The first comparison was to the estimated volumes from the previous study in 2010. The second comparison was to a development scenario that could potentially be constructed under the existing zoning of the site.

The last time this site was studied was in 2010, and the site was referred to as the Towne Centre. At that time, the general concept for development of the site was similar to the current proposal. The primary difference was in the number of units on the site. The residential use was slightly more intense in the 2010 proposal as compared to the current one. The retail uses, including restaurants, had about three times the square footage. The previous proposal also included a hotel and about 142,000 SF of office space, which are not included in the current proposal. Table 13 summarizes the trips generated in the 2010 study. Note that the previous study was performed prior to the publication of the $9^{\text {th }}$ Edition of Trip Generation Manual. The data presented in Table 13 were taken straight from that study. The 2010 study based trip generation on the $8^{\text {th }}$ Edition of Trip Generation Manual, which was the current edition at that time. The formulas and rates in the $9^{\text {th }}$ Edition are only slightly different for most of the assumed land uses, while many of the uses have no changes. Also note that the data presented in Table 13 account for a combined reduction of 20% due to internal capture and to pass-by trips. However, pass-by does not apply to all uses, such as residential. Therefore, the values for the combined internal capture and pass-by trips will not equal 20% of the raw total generated trips.

Table 13
Trip Generation Table from 2010 Towne Centre TIS

Land Use	ITE Code	Units	Qty	AM Peak Hour Volumes (veh/hr)			PM Peak Hour Volumes (veh/hr)			SAT Peak Hour Volumes (veh/hr)		
				In	Out	Total	In	Out	Total	In	Out	Total
Residential	233	DU	650	54	182	236	303	179	482	125	106	231
Office	710	1000 SF	142	218	30	248	40	198	238	26	23	49
Commercial	820	1000 SF	349	196	126	322	721	750	1471	1005	927	1932
Hotel	310	Rms	115	30	19	49	36	32	68	47	37	84
Total Generated Trips				498	357	855	1100	1159	2259	1203	1093	2296
Internal Capture + Pass-by (20\%)				(68)	(52)	(120)	(180)	(186)	(366)	(210)	(199)	(409)
Total New Trips				430	305	735	920	973	1893	993	894	1887

Source: Towne Centre Traffic Impact Study, January 26, 2010
For another comparison, City staff recommended generating traffic based on a land use assumption that assumes full development of the site with land uses that conform to the existing zoning for the site. Being constructed per existing zoning, this potential development would not require review by the City's Plan Commission. This scenario was also examined in the 2010 Towne Centre study. At that time, City staff provided recommended land use assumptions for the basis of this analysis via a memo dated January 29, 2009, which is included in Appendix K for reference. The City's recommendation was to model a development consisting of approximately 626,000 SF of gross leasable area of Shopping Center (ITE Land Use 820). Table 14 summarizes the estimated generated trips for such a development with and without an estimated combined 20\% of internal capture and pass-by.

Table 14 - Trip Generation Table for Alternate Development of Prairie Centre Site

Land Use	ITE Code	Units	Qty	AM Peak Hour Volumes (veh/hr)			PM Peak Hour Volumes (veh/hr)			SAT Peak Hour Volumes (veh/hr)		
				In	Out	Total	In	Out	Total	In	Out	Total
Shopping Center	820	1000 SF	626	296	181	477	983	1066	2049	1498	1384	2882
Internal Capture + Pass-by (20\%)				(59)	(36)	(95)	(197)	(213)	(410)	(300)	(277)	(577)
Total New Trips				237	145	382	786	853	1639	1198	1107	2305

Source: ITE Trip Generation Manual, gth $^{\text {th }}$ Edition
In general, both of the outlined alternatives are expected to generate much larger volumes of traffic than does the current proposal. Although the weekday AM peak hour volumes are expected to be similar in all three cases, the generated volumes are much higher in the weekday PM and Saturday peak hour cases. Tables 15 and 16 summarize and compare the generated traffic for each development case with a percentage change relative to the traffic generated by the current proposal. Table 15 shows the comparison without any internal capture or pass-by adjustments, while Table 16 includes those adjustments.

Table 15
Total Site Generated Traffic (vph) without Internal Capture or Pass-by Adjustments by Development Scenario and Peak Hour

Development Scenario	AM Peak	PM Peak	SAT Peak
	Total	Total	Total
Prairie Centre	1040	1059	1131
Towne Centre 2010			
Percentage Difference	-18%	$+113 \%$	$+103 \%$
Max Development per Current Zoning	477	2049	2882
Percentage Difference	-54%	$+93 \%$	$+155 \%$

Sources: ITE Trip Generation Manual, ght $^{\text {th }}$ Edition and Towne Centre Traffic Impact Study, January 26, 2010

Table 16
Total Site Generated Traffic (vph) with Internal Capture and Pass-by Adjustments by Development Scenario and Peak Hour

Development Scenario	AM Peak	PM Peak	SAT Peak
	Total	Total	Total
Prairie Centre	853	870	927
Towne Centre 2010			
Percentage Difference	-14%	$+117 \%$	$+104 \%$
Max Development per Current Zoning	382	1639	2305
Percentage Difference	-55%	$+88 \%$	$+149 \%$

Sources: ITE Trip Generation Manual, ght $^{\text {th }}$ Edition and Towne Centre Traffic Impact Study, January 26, 2010

As shown, the 2010 Towne Centre proposal was expected to generate just over twice the traffic of the Prairie Centre proposal for the weekday PM and Saturday peaks, while the Saturday peak is 1.5 times the Prairie Centre traffic for the potential development under current zoning. Although the weekday AM peak volume is expected to be higher for the Prairie Centre as compared to both alternate scenarios, the critical peak hours were still the weekday PM and Saturday peak hours, for which both the generated traffic volumes and the counted traffic volumes were higher than those for the weekday AM peak hour.

The larger volumes anticipated for the alternate development scenarios result in more significant impacts to the surrounding roadway network. To provide satisfactory operation, more improvements are needed. Dual left turn lanes would be needed at the main entrance on IL Route 38. Many turn lanes in the area would need to be extended. The interaction on Randall Road between IL Route 38 and Prairie Street would be exacerbated. Longer delays would be experienced at many of the driveways where further improvements are unrealistic for various reasons.

VII. Findings and Recommendations

The estimates and analyses discussed in the preceding pages, based on the proposed site layout and access as shown in Exhibit 2, indicate the following:

IL Route 38 \& Randall Road: This intersection and its turn lanes have sufficient capacity to accommodate the projected 2026 Total Site traffic. Individual movements may operate at LOS E or F, though this is not entirely attributed to the Prairie Centre Development as this occurs in the 2026 Base Traffic scenario also. The proposed future Kane County improvement to add through-traffic lanes to Randall Road will further enhance the capacity of this intersection. No improvements to this intersection are recommended as a result of the proposed development.

IL Route 38 \& West Mall Entrance: The site plans show conversion of the southbound approach to consist of an exclusive left turn lane, an exclusive through lane, and an exclusive right turn lane. Additionally, the northbound and southbound left turn phases should be converted to protected-permissive phasing.

IL Route 38 \& East Mall Entrance: This intersection has the overall capacity to accommodate the projected 2026 Total Traffic. The north- and southbound left turn movements will experience long delays and LOS F but with short queues.

IL Route $38 \& 14^{\text {th }}$ Street: This intersection has the overall capacity to accommodate the projected 2026 Total Traffic. The eastbound and westbound left turn queues will periodically approach the full left turn lane length during PM and Saturday peak hours. If needed, the painted median and taper can be adjusted to increase the storage length of the left turn lane. Further, consideration should be made for adding a northbound right turn lane to reduce existing delays and queues on that approach.

Randall Road \& Prairie Street: This intersection has the overall capacity to accommodate the projected 2026 Total Traffic. The peak period queues of southbound left turning traffic are anticipated to be as long as 10 to 15 cars. This is due partly to a projected increase in the left turning volume and partly to anticipated background growth in opposing through-
traffic volumes, limiting the amount of green time available for the left turn movement. An interim improvement can be made by adjusting the median and left turn lane alignment to provide additional storage length in the taper. If the proposed add-lanes improvement to Randall Road is in place by 2026, the southbound left turn queues can be expected to be reduced. There is also the potential for spillback on the northbound approach into the IL Route 38 intersection during the PM and Saturday peak periods. The proposed widening of Randall Road will be necessary to alleviate this concern.

Further, the existing peak period overflow of the westbound left turn lane will be increased with the addition of projected traffic, frequently blocking the Jewel Supermarket driveway, as well as the entrance to the retail strip mall on the south side of the street west of the Jewel store. These entrances could be converted to right turns only, as described in detail in the Base Year analysis. These improvements are not recommended with this development, as it treats what is an existing issue. Additionally, the degree of improvement needed will be impacted by the planned Randall Road widening. Therefore, the specific improvements to the westbound approach should be developed with some accounting for the Randall Road widening and when the two sets of improvements would happen relative to each other.

Prairie Street \& $14^{\text {th }}$ Street: Existing average delays to the northbound left turn movement are in the range of LOS D. With the addition of the background growth and the site development traffic, this movement will enter LOS F range during the PM peak hour. However, this intersection has the overall capacity to accommodate the 2026 Total Traffic volumes, with queues reaching four vehicles at most. Although traffic signal warrants are met under the existing traffic at the intersection, installation of traffic signal control is not recommended at this time. See Base Year analysis for more discussion about signalization.

Prairie Street \& $7^{\text {th }}$ Street: Base Year average delays for this intersection reach LOS F during the PM peak hour. The addition of site development traffic only adds to the delays at this intersection. For the westbound approach, queues will nearly reach the Prairie Street \& $4^{\text {th }}$ Street intersection. Traffic signal control is warranted under existing traffic. A number of improvements could alleviate delays, including signalization or conversion to a roundabout. No improvements are recommended as a part of the development, as the issues here are primarily existing.

Prairie Street \& 3 ${ }^{\text {rd }}$ Street: Base Year average delays for this intersection reach LOS F during the PM peak hour. The addition of site development traffic only adds to the delays at this intersection. For the westbound approach, queues will nearly reach the IL Route 31 and Prairie Street intersection. Traffic signal control is warranted under existing traffic. A number of improvements could alleviate delays, including signalization or conversion to a roundabout. No improvements are recommended as a part of the development, as the issues here are primarily existing $\ldots \ldots \ldots$,
Respectfully Submitte

Hampton, Lenzini and F

APPENDIX

A. EXHIBITS
B. HCS ANALYSIS REPORTS, 2016 EXISTING TRAFFIC
C. HCS ANALYSIS REPORTS, 2026 BASE TRAFFIC
D. HCS ANALYSIS REPORTS, 2026 TOTAL TRAFFIC
E. SYNCHRO ANALYSIS REPORTS, 2016 EXISTING TRAFFIC
F. SYNCHRO ANALYSIS REPORTS, 2026 BASE TRAFFIC
G. SYNCHRO ANALYSIS REPORTS, 2026 TOTAL TRAFFIC, NO IMPROVEMENTS
H. SYNCHRO ANALYSIS REPORTS, 2026 TOTAL TRAFFIC, WITH IMPROVEMENTS
I. SYNCHRO ANALYSIS REPORTS, 2026 TOTAL TRAFFIC, RANDALL WIDENING
J. CMAP MEMO TO ST. CHARLES, JUNE 3, 2016
K. ST. CHARLES ALTERNATE DEVELOPMENT MEMO, JANUARY 29, 2009
L. ITE LAND USE DIAGRAMS
M. TRIP GENERATION DIAGRAMS
N. ITE TRIP GENERATION HANDBOOK CH. 7, MULTI-USE DEVELOPMENT
O. INTERNAL CAPTURE DIAGRAM
P. TRAFFIC COUNTS
Q. TRAFFIC SIGNAL WARRANT ANALYSIS REPORTS

APPENDIX A

Exhibits

1. Location Exhibits
a. Location Map
b. Aerial Photo
2. Preliminary Site Plan
3. 2016 Existing Traffic
4. 2026 Base Traffic
5. Pass-by Traffic Example
6. Pass-by Traffic
7. Trip Distribution Diagram
8. Preliminary Site Traffic
9. 2026 Total Traffic
10. Lane Configurations
11. Intersection Spacing
12. Queue Length Exhibits
a. Prairie Street \& $14^{\text {th }}$ Street
b. Prairie Street at $7^{\text {th }}$ Street and at $3^{\text {rd }}$ Street

Exhibit 1A

Location Map

City of Saint Charles
Prairie Centre
Hampton, Lenzini and Renwick, inc.
Civil \& Structural Engineers . Land Surveyors . Environmental Services

Exhibit 1B

Aerial Photo Overview

City of Saint Charles
 Prairie Centre

(2) PROPOSED
(1) EXISTING

PROPERTY TO
BE DEVELOPED

STREET

(4) LOOKS LIKE THIS...

(6) SO YOUR NEW TOTAL VOLUME IS... (EXISTING + NON-PASS-BY + PASS-BY) INTERSECTION LIKE THIS (WE'LL JUST DO EAST BOUND IN THIS EXAMPLE)

(3) A PASS-BY TRIP...

(5) PASS-BY TRAFFIC IS ADDED TO THE

APPENDIX B

> HCS Analysis Reports
> 2016 Existing Traffic
> Weekday AM, Weekday PM, \& Saturday Peak Hours

1. IL Route 38 \& Jewel Driveway
2. IL Route 38 \& East Mall Entrance/Vanderbilt Drive
3. Prairie Street \& Jewel Driveway
4. Prairie Street \& West Mall Entrance
5. Prairie Street \& East Mall Entrance
6. Prairie Street \& Covington Court/Wessel Court
7. Prairie Street $\& 16^{\text {th }}$ Street
8. Prairie Street \& $14^{\text {th }}$ Street
9. Prairie Street \& $7^{\text {th }}$ Street
10. Prairie Street \& $3^{\text {rd }}$ Street
11. $14^{\text {th }}$ Street $\&$ Vanderbilt Drive
12. $14^{\text {th }}$ Street $\&$ Covington Court/Horne Street

HCS 2010 Two-Way Stop Control Summary Report

General Information

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			847	21			411	19				5				12
Percent Heavy Vehicles												0				8
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.
Generated: 7/21/2016 8:48:22 AM

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR_SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			597	31			914	72				19				58
Percent Heavy Vehicles												0				0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Dwy and IL 38
Jurisdiction	
East/West Street	IL 38
North/South Street	Jewel Dwy
Peak Hour Factor	1.00
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West ${ }^{\text {analysis Time Period }}$	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach			und				und			Nor				Sou	und	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	0		0	0	1		0	0	1
Configuration			T	TR			T	TR				R				R
Volume (veh/h)			779	46			703	63				27				82
Percent Heavy Vehicles												0				1
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Dwy and IL 38
Jurisdiction	
East/West Street	IL 38
North/South Street	Jewel Dwy
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West ${ }^{\text {analysis Time Period }}$	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)		4	826	8		25	412	3		10	3	41		3	1	4
Percent Heavy Vehicles		0				4				10	0	2		33	100	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Praire Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)		29	570	25		23	944	14		18	3	32		11	7	34
Percent Heavy Vehicles		3				0				0	0	3		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West ${ }^{\text {analysis Time Period }}$	
Project Description	Prairie Center TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)		45	751	17		18	700	21		18	8	20		12	5	44
Percent Heavy Vehicles		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West Analysis Time Period	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		19	194	13		11	215	13		16	5	11		8	2	23
Percent Heavy Vehicles		8				0				6	0	0		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	0.97
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West Analysis Time Period	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		21	216	129		35	307	20		76	12	50		17	7	38
Percent Heavy Vehicles		0				0				0	8	0		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West Analysis Time Period	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		38	202	126		30	241	25		84	7	34		17	10	54
Percent Heavy Vehicles		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	1.00
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	0	1		0	0	0		0	0	0
Configuration				TR		L		R			LR					
Volume (veh/h)			217	3		16		243		5		12				
Percent Heavy Vehicles						6				40		0				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			301	2		33	329			11		43				
Percent Heavy Vehicles						3				0		0				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			245	10		26	293			4		42				
Percent Heavy Vehicles						0				25		2				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			247	10		16	248			9		15				
Percent Heavy Vehicles						5				22		7				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			335	11		9	365			7		12				
Percent Heavy Vehicles						0				0		8				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			278	1		1	322			0		3				
Percent Heavy Vehicles						0				0		0				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West Analysis Time Period	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		3	234	5		10	221	8		13	0	23		14	0	5
Percent Heavy Vehicles		3				10				0	0	0		14	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct \& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	0.89
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West Analysis Time Period	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		8	364	22		15	361	11		12	1	12		6	0	2
Percent Heavy Vehicles		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct \& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West ${ }^{\text {analysis Time Period }}$	
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		8	321	6		6	308	5		21	0	8		7	0	10
Percent Heavy Vehicles		0				0				5	0	0		0	0	0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct \& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	1.00
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		8	275				223	8						35		29
Percent Heavy Vehicles		13												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		29	311				345	26						38		37
Percent Heavy Vehicles		0												0		0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		19	318				294	23						38		29
Percent Heavy Vehicles		0												0		0
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		
		\downarrow b

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			239	74		92	194			29		148				
Percent Heavy Vehicles						0				7		0				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		
		\downarrow b

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			251	93		190	311			58		188				
Percent Heavy Vehicles						1				2		0				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		
		\downarrow b

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			221	79		137	254			55		146				
Percent Heavy Vehicles						1				0		1				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.2		0.3	
Prop. Right-Turns	0.0		0.2		0.1		0.4	
Prop. Heavy Vehicle	0.0		0.1		0.3		0.1	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.1		0.1		0.4		0.0	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20
x, initial	0.44		0.26		0.11		0.18
hd, final value (s)	5.71		6.03		7.19		
x, final value	0.78		0.48		0.24		
Move-up time, m (s)	2.0						
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	3.7		4.0		0.36		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	617		537		372		450	
Delay (s/veh)	26.09		14.48		12.50		13.22	
LOS	D		B		B		B	
Approach: Delay (s/veh)	26.09		14.48		12.50		13.22	
LOS	D		B		B		B	
Intersection Delay (s/veh)	19.23							
Intersection LOS	C							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.0		0.3		0.2	
Prop. Right-Turns	0.0		0.1		0.2		0.5	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.0		-0.0		-0.2	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20		
x, initial	0.37		0.42		0.06		0.26		
hd, final value (s)	6.08		5.93		7.44		6.44		
x x, final value	0.70		0.79		0.13		0.52		
Move-up time, m (s)		2.0		2.0		2.0		2.0	
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	4.1		3.9		5.4		4.4		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	570		592		315		508	
Delay (s/veh)	22.18		27.33		11.59		16.18	
LOS	C		D		B		C	
Approach: Delay (s/veh)	22.18		27.33		11.59		16.18	
LOS	C		D		B		C	
Intersection Delay (s/veh)	22.21							
Intersection LOS	C							

ALL-WAY STOP CONTROL ANALYSIS

General Information

| Analyst |
| :--- | :--- |
| Agency/Co. |
| Date Performed |
| Analysis Time Period |

$H L R-S M$
$11: 3 / 2016$

Site Information

\|ntersection
Jurisdiction
Analysis Year

Project ID Prairie Centre TIS
East/West Street: Prairie St

Volume Adjustments and Site Characteristics

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.2		0.2	
Prop. Right-Turns	0.1		0.1		0.2		0.5	
Prop. Heavy Vehicle	0.1		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.2		-0.0		-0.0		-0.2	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	582		553		305		398	
Delay (s/veh)	12.56		11.38		9.34		9.88	
Los	B		B		A		A	
Approach: Delay (s/veh)	12.56		11.38		9.34		9.88	
LOS	B		B		A		A	
Intersection Delay (s/veh)	11.45							
Intersection LOS	B							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.2		0.1		0.2	
Prop. Right-Turns	0.1		0.1		0.2		0.2	
Prop. Heavy Vehicle	0.1		0.3		0.1		0.2	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.2		0.5		0.1		0.3	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20
x, initial	0.39		0.22		0.24		0.14
hd, final value (s)	6.28		7.00		6.81		
x, final value	0.77		0.49		0.51		
Move-up time, m (s)	2.0						
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	4.3		5.0		0.32		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	556		473		482		411	
Delay (s/veh)	27.34		16.44		16.76		13.72	
LOS	D		C		C		B	
Approach: Delay (s/veh)	27.34		16.44		16.76		13.72	
LOS	D		C		C		B	
Intersection Delay (s/veh)	20.42							
Intersection LOS	C							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.1		0.2		0.1	
Prop. Right-Turns	0.1		0.1		0.2		0.2	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.0		-0.0		-0.0		-0.0	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	474		506		400		436	
Delay (s/veh)	25.51		35.94		17.06		21.46	
LOS	D		E		C		C	
Approach: Delay (s/veh)	25.51		35.94		17.06		21.46	
LOS	D		E		C		C	
Intersection Delay (s/veh)	26.70							
Intersection LOS	D							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.2		0.2		0.1	
Prop. Right-Turns	0.2		0.0		0.2		0.2	
Prop. Heavy Vehicle	0.0		0.0		0.1		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.1		0.1		0.0		-0.1	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20
x, initial	0.26		0.26		0.19		0.18
hd, final value (s)	5.70		5.84		6.04		
x, final value	0.45		0.47		0.37		
Move-up time, m (s)	2.0						
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	3.7		3.8		0.33		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	537		537		469		450	
Delay (s/veh)	13.36		13.82		12.50		11.99	
LOS	B		B		B		B	
Approach: Delay (s/veh)	13.36		13.82		12.50		11.99	
LOS	B		B		B		B	
Intersection Delay (s/veh)	13.03							
Intersection LOS	B							

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15am	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		7	0	2		0	0	0		4	177	5		2	183	15
Percent Heavy Vehicles		0	0	50		0	0	0		25				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		23	0	38		0	0	0		13	287	0		1	299	34
Percent Heavy Vehicles		0	0	0		0	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		24	0	32		0	0	0		15	264	6		3	277	15
Percent Heavy Vehicles		0	0	0		0	0	0		0				33		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	7:15-8:15 am	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Praire Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		5	1	20		24	0	4		7	167	13		7	151	0
Percent Heavy Vehicles		0	0	5		4	0	50		0				29		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	4:30-5:30 pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Praire Centre T Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		3	2	14		36	2	5		31	245	36		5	282	3
Percent Heavy Vehicles		0	0	0		0	0	20		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/3/2016	East/West Street
Analysis Year	2016	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Prairie Centre TIS Existing	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		4	1	17		32	1	13		11	192	38		5	205	6
Percent Heavy Vehicles		0	100	0		3	0	0		0				0		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

APPENDIX C

HCS Analysis Reports
2026 Base Traffic
Weekday AM, Weekday PM, \& Saturday Peak Hours

1. IL Route 38 \& Jewel Driveway
2. IL Route 38 \& East Mall Entrance/Vanderbilt Drive
3. Prairie Street \& Jewel Driveway
4. Prairie Street \& West Mall Entrance
5. Prairie Street \& East Mall Entrance
6. Prairie Street \& Covington Court/Wessel Court
7. Prairie Street \& $16^{\text {th }}$ Street
8. Prairie Street \& $14^{\text {th }}$ Street
9. Prairie Street \& $7^{\text {th }}$ Street
10. Prairie Street \& $3^{\text {rd }}$ Street
11. $14^{\text {th }}$ Street $\&$ Vanderbilt Drive
12. $14^{\text {th }}$ Street $\&$ Covington Court/Horne Street

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		
		\downarrow b

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			947	23			466	21				6				13
Percent Heavy Vehicles												3				3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West Analysis Time Period	
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			685	34			1036	79				21				64
Percent Heavy Vehicles												3				3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Dwy and IL 38
Jurisdiction	
East/West Street	IL 38
North/South Street	Jewel Dwy
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			877	51			794	70				30				91
Percent Heavy Vehicles												3				3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Dwy and IL 38
Jurisdiction	
East/West Street	IL 38
North/South Street	Jewel Dwy
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Period
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)		4	924	9		28	467	3		11	3	45		3	1	4
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)		32	655	28		25	1069	15		20	3	35		12	8	38
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)		50	846	19		20	791	23		20	9	22		13	6	49
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)	54				22					56				74	
Capacity	754				718					96				169	
v/c Ratio	0.07				0.03					0.58				0.44	
95\% Queue Length	0.2				0.1					2.7				2.0	
Control Delay (s/veh)	10.1				10.2					85.4				41.9	
Level of Service (LOS)	B				B					F				E	
Approach Delay (s/veh)		0.6				0.2				85.4				41.9	
Approach LOS										F				E	

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		24	244	44		14	270	16		20	6	14		10	3	29
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		30	225	138		44	316	29		85	21	59		26	16	47
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

[^0]Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		48	254	158		38	303	31		106	9	43		21	13	68
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			273	4		20	305			6		15				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Site Information

Intersection	West Mall Ent\& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	West Mall Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

Copyright © 2016 University of Florida. All Rights Reserved.
HCS 2010™ TWSC Version 6.80 West Mall Ent\&Prairie_PR_AM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			378	3		41	413			14		54				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			308	13		33	368			5		53				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			310	13		20	311			11		19				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	East Mall Ent\&Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	East Mall Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Site Information

Intersection	East Mall Ent\&Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	East Mall Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			421	14		11	458			9		15				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			349	1		1	404			0		4				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		4	294	6		13	278	10		16	0	29		18	0	6
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct \& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	457	28		19	453	14		15	1	15		8	0	3
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct \& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	403	8		8	387	6		26	0	10		9	0	13
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct \& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		10	345				280	11						45		36
Percent Heavy Vehicles		3												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stre
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Per
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		36	391				433	34						49		46
Percent Heavy Vehicles		3												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stre
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Perior
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		24	399				369	30						49		36
Percent Heavy Vehicles		3												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM1	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			300	94		121	244			33		170				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			315	118		250	391			66		221				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			278	100		179	319			62		171				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

ALL-WAY STOP CONTROL ANALYSIS			
General Information		Site Information	
Analyst	HLR-SM	Intersection	$7{ }^{7 \text { th St and Prairie St }}$
Agency/Co.		Jurisdiction	
Date Performed	6/6/2016	Analysis Year	2026 Projected
Analysis Time Period	7:15am-8:15am		

Project ID Prairie Centre TIS
East/West Street: Prairie St
Volume Adjustments and Site Characteristics

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.2		0.3	
Prop. Right-Turns	0.0		0.2		0.1		0.4	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.1		-0.0		-0.2	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20		
x, initial	0.49		0.28		0.12		0.20		
hd, final value (s)	5.86		6.13		7.13		6.69		
x x, final value	0.89		0.55		0.27		0.41		
Move-up time, m (s)		. 0		2.0		. 0		2.0	
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	3.9		4.1		5.1		4.7		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	607		550		386		472	
Delay (s/veh)	38.79		16.24		12.74		14.31	
LOS	E		C		B		B	
Approach: Delay (s/veh)	38.79		16.24		12.74		14.31	
LOS	E		C		B		B	
Intersection Delay (s/veh)	25.58							
Intersection LOS	D							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.0		0.3		0.2	
Prop. Right-Turns	0.0		0.1		0.2		0.5	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.1		-0.0		-0.3	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20		
x, initial	0.44		0.50		0.07		0.31		
hd, final value (s)	6.90		6.76		8.83		7.28		
x x, final value	0.95		1.06		0.19		0.70		
Move-up time, m (s)		. 0		2.0		. 0		2.0	
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	4.9		4.8		6.8		5.3		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	520		566		328		486	
Delay (s/veh)	53.50		82.49		13.90		25.38	
LOS	F		F		B		D	
Approach: Delay (s/veh)	53.50		82.49		13.90		25.38	
LOS	F		F		B		D	
Intersection Delay (s/veh)	55.94							
Intersection LOS	F							

ALL-WAY STOP CONTROL ANALYSIS

General Information

Analyst
Agency/Co.
Date Performed
Analysis Time Period

HLR-SM
6/6/2016
$11: 15 a \mathrm{am}-12: 15 \mathrm{pm}$

Site Information

\|ntersection
Jurisdiction
Analysis Year

7th St and Prairie Centre

2026 Projected

Project ID Prairie Centre TIS
East/West Street: Prairie St

Volume Adjustments and Site Characteristics

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.2		0.2	
Prop. Right-Turns	0.1		0.1		0.2		0.5	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.0		-0.1		-0.3	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	656		631		320		436	
Delay (s/veh)	16.35		14.91		10.29		11.39	
Los	C		B		B		B	
Approach: Delay (s/veh)	16.35		14.91		10.29		11.39	
LOS	C		B		B		B	
Intersection Delay (s/veh)	14.56							
Intersection LOS	B							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.2		0.1		0.2	
Prop. Right-Turns	0.1		0.1		0.2		0.2	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.0		-0.0		-0.1		-0.1	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20
x, initial	0.46		0.26		0.28		0.17
hd, final value (s)	6.58		7.14		7.21		
x, final value	0.94		0.58		0.63		
Move-up time, m (s)	2.0						
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	4.6		5.1		0.40		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	541		470		471		422	
Delay (s/veh)	49.72		19.38		21.74		15.67	
LOS	E		C		C		C	
Approach: Delay (s/veh)	49.72		19.38		21.74		15.67	
LOS	E		C		C		C	
Intersection Delay (s/veh)	31.32							
Intersection LOS	D							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.1		0.2		0.1	
Prop. Right-Turns	0.1		0.1		0.2		0.2	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.1		-0.0		-0.1		-0.1	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	451		549		370		402	
Delay (s/veh)	103.95		196.71		32.58		59.21	
LOS	F		F		D		F	
Approach: Delay (s/veh)	103.95		196.71		32.58		59.21	
LOS	F		F		D		F	
Intersection Delay (s/veh)	113.14							
Intersection LOS	F							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.2		0.2		0.1	
Prop. Right-Turns	0.2		0.1		0.2		0.2	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.1		0.0		-0.1		-0.1	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20		
x, initial	0.31		0.31		0.24		0.22		
hd, final value (s)	6.54		6.61		6.86		6.95		
x x, final value	0.64		0.65		0.51		0.47		
Move-up time, m (s)		. 0		. 0		. 0		2.0	
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	4.5		4.6		4.9		4.9		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	512		507		463		450	
Delay (s/veh)	20.43		20.92		16.85		16.02	
Los	C		C		C		C	
Approach: Delay (s/veh)	20.43		20.92		16.85		16.02	
LOS	C		C		C		C	
Intersection Delay (s/veh)	18.89							
Intersection LOS	C							

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		15	0	2		0	0	0		4	198	6		2	204	24
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		40	0	42		0	0	0		15	321	0		1	334	52
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		37	0	36		0	0	0		17	295	7		3	309	26
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		6	1	22		28	0	4		8	193	16		8	175	0
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Prairie Centre TIS Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		3	2	16		42	2	6		35	286	42		6	327	3
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010™ TWSC Version 6.80 14th\&Covington_PR_PM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/6/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre Projected	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		4	1	19		37	1	15		12	223	43		6	237	7
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

APPENDIX D

HCS Analysis Reports
2026 Total Traffic
Weekday AM, Weekday PM, \& Saturday Peak Hours

1. IL Route 38 \& Jewel Driveway
2. IL Route 38 \& East Mall Entrance/Vanderbilt Drive
3. Prairie Street \& Jewel Driveway
4. Prairie Street \& West Mall Entrance
5. Prairie Street \& East Mall Entrance
6. Prairie Street \& Covington Court/Wessel Court
7. Prairie Street \& $16^{\text {th }}$ Street
8. Prairie Street \& $14^{\text {th }}$ Street
9. Prairie Street \& $7^{\text {th }}$ Street
10. Prairie Street \& $3^{\text {rd }}$ Street
11. $14^{\text {th }}$ Street $\&$ Vanderbilt Drive
12. $14^{\text {th }}$ Street $\&$ Covington Court/Horne Street

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		
		\downarrow b

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			1123	23			683	21				6				13
Percent Heavy Vehicles												3				3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Dwy and IL 38
Jurisdiction	
East/West Street	IL 38
North/South Street	Jewel Dwy
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		
		\downarrow b

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			891	34			1213	79				21				64
Percent Heavy Vehicles												3				3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	3	1		0	0	1		0	0	1
Configuration			T	TR			T	R				R				R
Volume (veh/h)			1085	51			1003	70				30				91
Percent Heavy Vehicles												3				3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	1	0
Configuration		L	T	TR		L	T	TR			LTR			L		TR
Volume (veh/h)		22	982	9		28	502	29		11	3	45		13	1	38
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Period
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	1	0
Configuration		L	T	TR		L	T	TR			LTR			L		TR
Volume (veh/h)		57	698	28		25	1108	69		20	3	35		17	8	62
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		24	307	44		14	356	16		20	6	14		10	3	29
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		30	329	138		44	377	29		85	21	59		26	16	47
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Jewel Ent and Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Jewel Ent
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	1		0	1	0		0	1	0
Configuration			LTR			L	T	R			LTR				LTR	
Volume (veh/h)		48	346	158		38	377	31		106	9	43		21	13	68
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)	52				41					172				111	
Capacity	1110				1015					185				326	
v/c Ratio	0.05				0.04					0.93				0.34	
95\% Queue Length	0.1				0.1					7.3				1.5	
Control Delay (s/veh)	8.4				8.7					100.0				21.7	
Level of Service (LOS)	A				A					F				c	
Approach Delay (s/veh)		1.3				0.7				100.0				21.7	
Approach LOS										F				C	

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			296	44		20	368			29		39				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			423	62		41	456			32		72				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010™ TWSC Version 6.80 West Mall Ent\&Prairie_T_NI_PM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			345	68		33	419			28		76				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			334	46		83	311			69		72				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			439	59		90	458			52		58				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			372	38		79	404			51		54				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		4	371	6		13	341	10		16	0	29		18	0	6
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	518	28		19	532	14		15	1	15		8	0	3
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	476	8		8	465	6		26	0	10		9	0	13
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

Site Information

Intersection	Covington Ct\& Prairie St
Jurisdiction	
East/West Street	Prairie St
North/South Street	Covington Ct
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Major Street: East-West

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stre
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Per
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		15	417				336	11						45		43
Percent Heavy Vehicles		3												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.
HCS 2010™ TWSC Version 6.80 16th\&Prairie_T_NI_AM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stre
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Perior
Project Description	Prairie Centre Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		41	447				506	34						49		52
Percent Heavy Vehicles		3												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stre
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Perior
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	0	0
Configuration		LT						TR							LR	
Volume (veh/h)		30	466				440	30						49		43
Percent Heavy Vehicles		3												3		3
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.
HCS 2010™ TWSC Version 6.80 16th\&Prairie_T_NI_Sat.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			372	94		121	300			33		170				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.
HCS 2010™ TWSC Version 6.80 14th\&Prairie_T_NI_AM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			371	118		250	464			66		221				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR_SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	East-West	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	T			L		R				
Volume (veh/h)			345	100		179	390			62		171				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.
HCS 2010™ TWSC Version 6.80 14th\&Prairie_T_NI_Sat.xtw

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.2		0.2	
Prop. Right-Turns	0.0		0.2		0.1		0.4	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.1		-0.0		-0.2	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20		
x, initial	0.55		0.32		0.12		0.21		
hd, final value (s)	6.16		6.48		7.66		7.07		
x x, final value	1.06		0.64		0.29		0.47		
Move-up time, m (s)		. 0		2.0		2.0		2.0	
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	4.2		4.5		5.7		5.1		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	620		540		386		484	
Delay (s/veh)	78.83		20.45		13.75		16.21	
LOS	F		C		B		C	
Approach: Delay (s/veh)	78.83		20.45		13.75		16.21	
LOS	F		C		B		C	
Intersection Delay (s/veh)	45.76							
Intersection LOS	E							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.3		0.1	
Prop. Right-Turns	0.0		0.1		0.2		0.5	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.1		-0.0		-0.3	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	550		615		328		487	
Delay (s/veh)	88.95		129.02		14.32		29.55	
LOS	F		F		B		D	
Approach: Delay (s/veh)	88.95		129.02		14.32		29.55	
LOS	F		F		B		D	
Intersection Delay (s/veh)	87.03							
Intersection LOS	F							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.2		0.0		0.2		0.2	
Prop. Right-Turns	0.0		0.1		0.2		0.6	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	0.0		-0.0		-0.1		-0.3	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20
x, initial	0.43		0.38		0.06		0.19
hd, final value (s)	5.58		5.63		6.96		
x, final value	0.75		0.67		0.14		
Move-up time, m (s)	2.0						
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	3.6		3.6		0.36		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	629		618		320		460	
Delay (s/veh)	23.45		19.25		11.04		12.79	
Los	C		C		B		B	
Approach: Delay (s/veh)	23.45		19.25		11.04		12.79	
LOS	C		C		B		B	
Intersection Delay (s/veh)	19.34							
Intersection LOS	C							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.1		0.1		0.2	
Prop. Right-Turns	0.1		0.1		0.2		0.3	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.0		-0.0		-0.1		-0.1	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	560		461		457		417	
Delay (s/veh)	86.17		22.93		24.33		17.53	
LOS	F		C		C		C	
Approach: Delay (s/veh)	86.17		22.93		24.33		17.53	
LOS	F		C		C		C	
Intersection Delay (s/veh)	47.90							
Intersection LOS	E							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.1		0.2		0.1	
Prop. Right-Turns	0.1		0.1		0.2		0.3	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.0		-0.0		-0.1		-0.1	

Departure Headway and Service Time

hd, initial value (s)	3.20		3.20		3.20		3.20		
x, initial	0.43		0.51		0.24		0.36		
hd, final value (s)	8.99		9.02		9.71		8.92		
x x, final value	1.22		1.44		0.72		0.99		
Move-up time, m (s)		. 0		2.0		2.0		2.0	
Service Time, $\mathrm{t}_{\mathrm{s}}(\mathrm{s})$	7.0		7.0		7.7		6.9		

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	489		573		370		404	
Delay (s/veh)	147.64		234.52		34.05		73.15	
LOS	F		F		D		F	
Approach: Delay (s/veh)	147.64		234.52		34.05		73.15	
LOS	F		F		D		F	
Intersection Delay (s/veh)	141.66							
Intersection LOS	F							

Saturation Headway Adjustment Worksheet

Prop. Left-Turns	0.1		0.2		0.2		0.1	
Prop. Right-Turns	0.1		0.0		0.2		0.3	
Prop. Heavy Vehicle	0.0		0.0		0.0		0.0	
hLT-adj	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hRT-adj	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
hHV-adj	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
hadj, computed	-0.1		0.0		-0.1		-0.1	

Departure Headway and Service Time

Capacity and Level of Service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Capacity (veh/h)	488		477		417		417	
Delay (s/veh)	29.74		27.91		19.57		19.39	
LOS	D		D		C		C	
Approach: Delay (s/veh)	29.74		27.91		19.57		19.39	
LOS	D		D		C		C	
Intersection Delay (s/veh)	25.01							
Intersection LOS	D							

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		23	0	25		0	0	0		4	198	6		2	204	34
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		48	0	61		0	0	0		15	321	0		1	334	61
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010™ TWSC Version 6.80 14th\&Vanderbilt_T_NI_PM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		47	0	59		0	0	0		17	295	7		3	309	36
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010™ TWSC Version 6.80 14th\&Vanderbilt_T_NI_Sat.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	7:15am-8:15am	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		6	1	22		38	0	4		8	193	24		8	175	0
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	4:30pm-5:30pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Period
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 L	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		3	2	16		51	2	6		35	286	50		6	327	3
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010™ TWSC Version 6.80 14th\&Covington_T_NI_PM.xtw

HCS 2010 Two-Way Stop Control Summary Report

General Information

Analyst	HLR-SM	Intersection
Agency/Co.		Jurisdiction
Date Performed	6/10/2016	East/West Street
Analysis Year	2026	North/South Stree
Time Analyzed	11:15am-12:15pm	Peak Hour Factor
Intersection Orientation	North-South	Analysis Time Peri
Project Description	Prairie Centre TIS Total No Improvements	
Lanes		

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		4	1	19		47	1	15		12	223	53		6	237	7
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No															
Median Type	Undivided															
Median Storage																

Delay, Queue Length, and Level of Service

Copyright © 2016 University of Florida. All Rights Reserved.

HCS 2010™ TWSC Version 6.80 14th\&Covington_T_NI_Sat.xtw

APPENDIX E

Synchro Analysis Reports
 2016 Existing Traffic

1. Weekday AM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
2. Weekday PM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
3. Saturday Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street

1：Randall Rd \＆IL Route 38

	\rangle						4	4	7		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	个 \uparrow	「	\％${ }^{*}$	个4	$\overline{7}$	\％${ }^{*}$	个 \uparrow	「	\％${ }^{*}$	个个	F
Volume（vph）	219	531	35	35	235	147	92	935	33	290	953	240
Satd．Flow（prot）	3155	3471	1380	3213	3343	1538	3335	3438	1442	3335	3406	1495
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3155	3471	1363	3210	3343	1538	3334	3438	1423	3333	3406	1476
Satd．Flow（RTOR）			97			62			97			174
Lane Group Flow（vph）	238	577	38	38	255	160	100	1016	36	315	1036	261
Turn Type	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	5	2		1	6	7	，	8	1	7	4	5
Permitted Phases			2			6			8			4
Total Split（s）	21.0	32.5	15.0	20.0	31.5	26.0	15.0	61.5	20.0	26.0	72.5	21.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	14.9	33.5	44.7	7.1	23.8	48.4	9.2	61.3	70.4	18.1	70.2	87.0
Actuated g／C Ratio	0.11	0.24	0.32	0.05	0.17	0.35	0.07	0.44	0.50	0.13	0.50	0.62
v／c Ratio	0.71	0.70	0.08	0.23	0.45	0.28	0.46	0.68	0.05	0.73	0.61	0.26
Control Delay	72.5	53.7	0.3	66.7	54.6	20.1	69.6	35.5	0.1	78.5	21.9	1.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
Total Delay	72.5	53.7	0.3	66.7	54.6	20.1	69.6	35.5	0.1	78.5	22.1	1.5
LOS	E	D	A	E	D	C	E	D	A	E	C	A
Approach Delay		56.6			43.4			37.4			29.8	
Approach LOS		E			D			D			C	
Queue Length 50th（ft）	108	252	0	17	109	61	45	400	0	128	383	7
Queue Length 95th（ft）	155	324	0	36	155	115	76	501	0	m200	287	m4
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（tt）	425		490				235		460	240		220
Base Capacity（vph）	371	830	514	355	608	607	250	1504	845	512	1706	1001
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	152	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.64	0.70	0.07	0.11	0.42	0.26	0.40	0.68	0.04	0.62	0.67	0.26
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 94 （67\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.73												
Intersection Signal Delay： 39.1					ntersection LOS：D							
Intersection Capacity Utilization $77.1 \% \quad$ ICU Level of Service DAnalysis Period（min） 15												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

	4			\checkmark			4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	个t		\%	F		${ }^{7}$	\uparrow	F
Volume (vph)	8	783	67	29	402	1	33	2	48	5	1	1
Satd. Flow (prot)	1444	3410	0	1805	3367	0	1752	1596	0	1805	1900	1615
Flt Permitted	0.505			0.298			0.757			0.722		
Satd. Flow (perm)	768	3410	0	566	3367	0	1396	1596	0	1372	1900	1615
Satd. Flow (RTOR)		12						51				64
Lane Group Flow (vph)	8	895	0	31	424	0	35	53	0	5	1	1
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	13.0	72.0		13.0	72.0		35.0	35.0		35.0	35.0	35.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	100.4	95.3		102.1	99.2		10.6	10.6		10.6	10.6	10.6
Actuated g/C Ratio	0.84	0.79		0.85	0.83		0.09	0.09		0.09	0.09	0.09
v/c Ratio	0.01	0.33		0.06	0.15		0.29	0.28		0.04	0.01	0.01
Control Delay	2.1	5.3		0.8	1.5		56.3	18.2		49.2	48.0	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.1	5.3		0.8	1.5		56.3	18.2		49.2	48.0	0.0
LOS	A	A		A	A		E	B		D	D	A
Approach Delay		5.3			1.4			33.4			42.0	
Approach LOS		A			A			C			D	
Queue Length 50th (ft)	1	113		1	5		26	1		4	1	0
Queue Length 95th (ft)	4	165		2	71		58	40		16	6	0
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	710	2710		582	2782		337	424		331	459	438
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0			0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.01	0.33		0.05	0.15		0.10	0.13		0.02	0.00	0.00
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $95(79 \%)$, Referenced to phase 2:EBTL and $6: W B T L$, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.33
Intersection Signal Delay: $6.0 \quad$ Intersection LOS: A
Intersection Capacity Utilization 43.0\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		7	个 ${ }^{\text {a }}$		7	F		7	F	
Volume (vph)	66	809	7	86	389	43	12	76	198	69	88	30
Satd. Flow (prot)	1770	3428	0	1703	3304	0	1671	1671	0	1787	1801	0
Flt Permitted	0.490			0.253			0.679			0.312		
Satd. Flow (perm)	912	3428	0	453	3304	0	1195	1671	0	587	1801	0
Satd. Flow (RTOR)		1			14			96			13	
Lane Group Flow (vph)	67	833	0	88	441	0	12	280	0	70	121	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	65.0		13.0	65.0		13.0	29.0		13.0	29.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	70.4	60.2		72.2	62.6		33.7	26.1		38.2	31.9	
Actuated g/C Ratio	0.59	0.50		0.60	0.52		0.28	0.22		0.32	0.27	
v / C Ratio	0.11	0.48		0.25	0.26		0.03	0.64		0.26	0.25	
Control Delay	16.4	32.6		10.9	16.4		28.4	36.2		31.5	34.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	16.4	32.6		10.9	16.4		28.4	36.2		31.5	34.2	
LOS	B	C		B	B		C	D		C	C	
Approach Delay		31.4			15.5			35.9			33.2	
Approach LOS		C			B			D			C	
Queue Length 50th (ft)	26	306		26	95		6	134		38	62	
Queue Length 95th (ft)	64	405		47	133		21	235		74	128	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	620	1719		375	1729		398	438		281	487	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.11	0.48		0.23	0.26		0.03	0.64		0.25	0.25	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: 43 (36%), Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.64
Intersection Signal Delay: 27.9 Intersection LOS: C
Intersection Capacity Utilization 65.7\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 3: 14th St \& IL Route 38

	4						4	4			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	f		\％	\uparrow	「	\％	个 ${ }^{\text {a }}$		${ }^{7}$	个 ${ }^{\text {a }}$	
Volume（vph）	3	5	15	115	9	120	15	1186	120	123	1347	11
Satd．Flow（prot）	1805	1582	0	1687	1900	1524	1805	3347	0	1703	3399	0
Flt Permitted	0.751			0.431			0.153			0.143		
Satd．Flow（perm）	1410	1582	0	764	1900	1487	291	3347	0	256	3399	0
Satd．Flow（RTOR）		16				128		13			1	
Lane Group Flow（vph）	3	21	0	122	10	128	16	1390	0	131	1445	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	26.5		13.0	26.5	13.0	13.0	87.5		13.0	87.5	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	11.6	7.5		17.6	13.3	23.1	108.2	100.5		113.8	107.9	
Actuated g／C Ratio	0.08	0.05		0.13	0.10	0.16	0.77	0.72		0.81	0.77	
v／c Ratio	0.02	0.21		0.79	0.06	0.36	0.06	0.58		0.46	0.55	
Control Delay	48.7	36.1		88.5	56.1	10.2	3.2	6.6		8.7	9.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.1		0.0	0.0	
Total Delay	48.7	36.1		88.5	56.1	10.2	3.2	6.7		8.7	9.0	
LOS	D	D		F	E	B	A	A		A	A	
Approach Delay		37.7			48.7			6.6			9.0	
Approach LOS		D			D			A			A	
Queue Length 50th（ft）	2	4		102	8	0	2	112		24	247	
Queue Length 95th（ft）	12	33		\＃167	27	56	m4	152		43	426	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ft）	70			100		100	145			170		
Base Capacity（vph）	180	239		155	273	371	329	2406		301	2619	
Starvation Cap Reductn	0	0		0	0	0	0	170		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.02	0.09		0.79	0.04	0.35	0.05	0.62		0.44	0.55	
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 101 （72\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.79												
Intersection Signal Delay： 11.3					Intersection LOS：B							
Intersection Capacity Utilization 73．1\％					ICU Level of Service D							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th perc	equeue	metere	by ups	eam sig								

Splits and Phases：11：Randall Rd \＆Prairie St

Prairie Centre 7：15 am 4／12／2016 Existing 2016

1：Randall Rd \＆IL Route 38

							4	4	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	个个	${ }^{7}$	${ }^{1 *}$	个个	「	${ }^{1 *}$	个个	「	${ }^{1+1}$	个个	F
Volume（vph）	270	326	79	125	522	344	104	1152	51	240	1158	273
Satd．Flow（prot）	3367	3539	1583	3467	3539	1568	3367	3539	1583	3433	3505	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3365	3539	1583	3467	3539	1548	3367	3539	1583	3433	3505	1583
Satd．Flow（RTOR）			62			62			62			100
Lane Group Flow（vph）	281	340	82	130	544	358	108	1200	53	250	1206	284
Turn Type	Prot	NA	pm＋ov									
Protected Phases	5	2	3	，	6	7		，	，	7	4	5
Permitted Phases			2			6			8			4
Total Split（s）	17.0	31.5	18.0	17.0	31.5	18.0	18.0	73.5	17.0	18.0	73.5	17.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	12.5	27.1	43.5	10.4	25.0	40.1	9.9	67.4	84.3	13.1	70.6	89.6
Actuated g／C Ratio	0.09	0.19	0.31	0.07	0.18	0.29	0.07	0.48	0.60	0.09	0.50	0.64
v／c Ratio	0.94	0.50	0.15	0.51	0.86	0.73	0.46	0.70	0.05	0.78	0.68	0.27
Control Delay	100.8	53.7	12.6	69.0	70.4	44.0	68.3	31.4	2.0	87.1	22.1	4.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0
Total Delay	100.8	53.7	12.6	69.0	70.4	44.0	68.3	31.4	2.0	87.1	22.5	4.4
LOS	F	D	B	E	E	D	E	C	A	F	C	A
Approach Delay		67.7			61.1			33.2			28.8	
Approach LOS		E			E			C			C	
Queue Length 50th（ft）	133	147	13	59	255	234	49	444	0	106	460	35
Queue Length 95th（ft）	\＃222	203	53	93	\＃347	350	80	528	14	m\＃164	m455	m31
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ t ）	425		490				235		460	240		220
Base Capacity（vph）	300	684	573	309	631	493	324	1703	1000	331	1768	1049
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	173	0
Spillback Cap Reductn	0	0	0	0	0	0	0	22	0		0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.94	0.50	0.14	0.42	0.86	0.73	0.33	0.71	0.05	0.76	0.76	0.27
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 12 （9\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.94												
Intersection Signal Delay： 42.6					Intersection LOS：D							
Intersection Capacity Utilization 79．9\％					ICU Level of Service D							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 4：30 pm 4／12／2016 Existing 2016

	\rangle			\dagger			4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {a }}$		\%	个t		\%	F		${ }^{7}$	\uparrow	F
Volume (vph)	19	552	46	57	936	8	48	2	60	20	4	7
Satd. Flow (prot)	1805	3506	0	1805	3536	0	1805	1623	0	1719	1900	1417
Flt Permitted	0.274			0.392			0.755			0.713		
Satd. Flow (perm)	520	3506	0	745	3536	0	1433	1623	0	1290	1900	1398
Satd. Flow (RTOR)		11			1			65				64
Lane Group Flow (vph)	20	643	0	61	1015	0	52	67	0	22	4	8
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	13.0	72.0		13.0	72.0		35.0	35.0		35.0	35.0	35.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	98.2	91.9		100.5	96.0		11.7	11.7		11.7	11.7	11.7
Actuated g/C Ratio	0.82	0.77		0.84	0.80		0.10	0.10		0.10	0.10	0.10
v/c Ratio	0.04	0.24		0.09	0.36		0.37	0.31		0.17	0.02	0.04
Control Delay	2.6	5.8		1.0	2.3		57.2	16.0		51.4	46.8	0.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.6	5.8		1.0	2.3		57.2	16.0		51.4	46.8	0.4
LOS	A	A		A	A		E	B		D	D	A
Approach Delay		5.7			2.2			34.0			38.8	
Approach LOS		A			A			C			D	
Queue Length 50th (ft)	2	78		2	21		38	1		16	3	0
Queue Length 95th (ft)	7	120		m5	39		77	44		41	14	0
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	539	2687		714	2830		346	441		311	459	386
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.04	0.24		0.09	0.36		0.15	0.15		0.07	0.01	0.02
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $93(78 \%)$, Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.37
Intersection Signal Delay: 6.1 Intersection LOS: A
Intersection Capacity Utilization $55.5 \% \quad$ ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{4}$	性		\%	个 ${ }^{\text {P }}$		${ }^{7}$	F		\%	$\hat{\beta}$	
Volume (vph)	93	560	14	218	859	73	40	153	185	116	186	50
Satd. Flow (prot)	1805	3527	0	1805	3520	0	1805	1744	0	1805	1826	0
Flt Permitted	0.218			0.373			0.461			0.150		
Satd. Flow (perm)	414	3527	0	709	3520	0	875	1744	0	285	1826	0
Satd. Flow (RTOR)		3			10			45			10	
Lane Group Flow (vph)	96	591	0	225	961	0	41	349	0	120	244	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	65.0		13.0	65.0		13.0	29.0		13.0	29.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Effct Green (s)	69.8	58.9		72.6	60.3		33.0	23.1		36.8	26.7	
Actuated g/C Ratio	0.58	0.49		0.60	0.50		0.28	0.19		0.31	0.22	
v / C Ratio	0.29	0.34		0.44	0.54		0.14	0.94		0.59	0.59	
Control Delay	15.3	25.3		12.8	21.8		29.7	75.8		42.3	47.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.3	25.3		12.8	21.8		29.7	75.8		42.3	47.9	
LOS	B	C		B	C		C	E		D	D	
Approach Delay		23.9			20.1			71.0			46.1	
Approach LOS		C			C			E			D	
Queue Length 50th (ft)	27	149		71	257		22	238		67	166	
Queue Length 95th (ft)	76	258		109	328		49	\#423		116	263	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	356	1731		516	1773		329	371		207	414	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.27	0.34		0.44	0.54		0.12	0.94		0.58	0.59	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: 47 (39%), Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 32.3
Intersection LOS: C
Intersection Capacity Utilization 74.1\%
ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

	4	\rightarrow						\dagger			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%			\%	\uparrow	F	\%	个t		\%	中 ${ }^{\text {d }}$	
Volume (vph)	56	27	89	192	30	198	64	1493	185	155	1404	33
Satd. Flow (prot)	1805	1662	0	1805	1900	1599	1805	3456	0	1770	3497	0
FIt Permitted	0.687			0.565			0.126			0.064		
Satd. Flow (perm)	1305	1662	0	1071	1900	1599	239	3456	0	119	3497	0
Satd. Flow (RTOR)		92				99		16			3	
Lane Group Flow (vph)	58	120	0	198	31	204	66	1730	0	160	1481	0
Turn Type	pm+pt	NA		pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split (s)	13.0	26.5		13.0	26.5	13.0	13.0	87.5		13.0	87.5	
Total Lost Time (s)	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green (s)	21.2	9.7		20.2	12.5	25.2	100.1	91.3		105.6	95.9	
Actuated g/C Ratio	0.15	0.07		0.14	0.09	0.18	0.72	0.65		0.75	0.68	
v / c Ratio	0.25	0.60		0.99	0.18	0.55	0.27	0.77		0.82	0.62	
Control Delay	50.2	31.2		115.3	62.3	32.4	5.8	13.3		54.1	14.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.1		0.0	0.0	
Total Delay	50.2	31.2		115.3	62.3	32.4	5.8	13.3		54.1	14.5	
LOS	D	C		F	E	C	A	B		D	B	
Approach Delay		37.4			72.5			13.1			18.3	
Approach LOS		D			E			B			B	
Queue Length 50th (ft)	46	25		169	27	87	12	310		64	366	
Queue Length 95th (ft)	84	87		\#278	59	164	m18	m351		\#199	516	
Internal Link Dist (ft)		187			212			597			526	
Turn Bay Length (t)	70			100		100	145			170		
Base Capacity (vph)	246	316		201	271	369	276	2260		196	2395	
Starvation Cap Reductn	0	0		0	0	0	0	29		0	0	
Spillback Cap Reductn	0	1		0	0	0	0	0		0	39	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.24	0.38		0.99	0.11	0.55	0.24	0.78		0.82	0.63	
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 1 (1\%), Referenced to phase 2:NBTL and 6:SBTL, Start of 1st Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.99												
Intersection Signal Delay: 22.6					Intersection LOS: C							
Intersection Capacity Utilization 87.2\%					ICU Level of Service E							
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												
m Volume for 95th per	queue	meter	by ups	eam sig								

Splits and Phases: 11: Randall Rd \& Prairie St

Prairie Centre 4:30 pm 4/12/2016 Existing 2016

1：Randall Rd \＆IL Route 38

	4						4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	个个	「	7\％	个4	F	\％${ }^{1}$	个个	「	\％${ }^{1 / 1}$	个 \uparrow	¢
Volume（vph）	357	417	107	176	310	291	109	1154	84	298	1417	283
Satd．Flow（prot）	3467	3539	1568	3502	3539	1583	3467	3539	1599	3502	3539	1599
FIt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3467	3539	1548	3499	3539	1583	3466	3539	1599	3502	3539	1579
Satd．Flow（RTOR）			73			73			73			199
Lane Group Flow（vph）	368	430	110	181	320	300	112	1190	87	307	1461	292
Turn Type	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	5	2	3	1	6	7	3	8	1	7	4	5
Permitted Phases			2			6			8			4
Total Split（s）	17.0	31.5	18.0	17.0	31.5	18.0	18.0	53.5	17.0	18.0	53.5	17.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	12.5	24.1	35.4	11.0	22.7	42.5	9.2	49.5	67.0	13.4	53.6	68.1
Actuated g／C Ratio	0.10	0.20	0.30	0.09	0.19	0.35	0.08	0.41	0.56	0.11	0.45	0.57
v / c Ratio	1.02	0.60	0.22	0.56	0.48	0.49	0.42	0.82	0.09	0.79	0.92	0.30
Control Delay	105.4	47.4	11.7	59.0	45.5	25.0	57.3	37.4	4.1	76.1	32.0	1.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	0.0	1.0	0.0
Total Delay	105.4	47.4	11.7	59.0	45.5	25.0	57.3	41.6	4.1	76.1	33.0	1.3
LOS	F	D	B	E	D	C	E	D	A	E	C	A
Approach Delay		66.6			40.9			40.5			35.0	
Approach LOS		E			D			D			C	
Queue Length 50th（ft）	～155	157	19	70	114	130	43	438	5	131	438	1
Queue Length 95th（ft）	\＃254	214	59	107	160	214	72	535	28	m163	\＃756	m5
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ t ）	425		490				235		460	240		220
Base Capacity（vph）	361	743	562	364	737	612	390	1459	943	398	1581	984
Starvation Cap Reductn	0	0	0	0	0	，	0	0	0	O	30	0
Spillback Cap Reductn	0	0	0	0	0	3	0	196	0	0	0	0
Storage Cap Reductn	0	0	0	0	，	0	0	0	0	0	0	0
Reduced v／c Ratio	1.02	0.58	0.20	0.50	0.43	0.49	0.29	0.94	0.09	0.77	0.94	0.30
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 0 （0\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.02												
Intersection Signal Delay： 42.9					Intersection LOS：D							
Intersection Capacity Utilization 83．5\％					ICU Level of Service E							
Analysis Period（min） 15												
～Volume exceeds capacity，queue is theoretically infinite．												
Queue shown is maximum after two cycles．												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

	4			\checkmark			4	\uparrow			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	个t		\%	\hat{F}		${ }^{7}$	\uparrow	F
Volume (vph)	18	634	59	35	671	6	48	1	63	18	7	2
Satd. Flow (prot)	1805	3499	0	1805	3531	0	1770	1619	0	1805	1900	1615
FIt Permitted	0.375			0.354			0.753			0.713		
Satd. Flow (perm)	712	3499	0	673	3531	0	1403	1619	0	1355	1900	1615
Satd. Flow (RTOR)		13			1			67				94
Lane Group Flow (vph)	19	737	0	37	720	0	51	68	0	19	7	2
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	18.0	57.0		13.0	52.0		35.0	35.0		35.0	35.0	35.0
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Act Effct Green (s)	87.1	84.4		88.2	86.5		9.3	9.3		9.3	9.3	9.3
Actuated g/C Ratio	0.83	0.80		0.84	0.82		0.09	0.09		0.09	0.09	0.09
v/c Ratio	0.03	0.26		0.06	0.25		0.41	0.33		0.16	0.04	0.01
Control Delay	2.1	4.1		0.9	1.1		54.4	15.5		45.7	42.1	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.1	4.1		0.9	1.1		54.4	15.5		45.7	42.1	0.0
LOS	A	A		A	A		D	B		D	D	A
Approach Delay		4.1			1.1			32.2			41.5	
Approach LOS		A			A			C			D	
Queue Length 50th (ft)	2	70		1	10		33	1		12	4	0
Queue Length 95th (ft)	6	111		m3	26		70	40		34	18	0
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	753	2813		669	2907		414	525		400	560	543
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.03	0.26		0.06	0.25		0.12	0.13		0.05	0.01	0.00
Intersection Summary												

Cycle Length: 105

Actuated Cycle Length: 105
Offset: 87 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.41
Intersection Signal Delay: $5.3 \quad$ Intersection LOS: A
Intersection Capacity Utilization 42.1\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个 ${ }^{\text {a }}$		\%	个 ${ }^{\text {a }}$		*	¢		\%	F	
Volume (vph)	68	625	25	243	626	54	36	116	227	97	149	29
Satd. Flow (prot)	1770	3518	0	1770	3496	0	1805	1377	0	1805	1820	0
Flt Permitted	0.322			0.271			0.637			0.197		
Satd. Flow (perm)	599	3518	0	505	3496	0	1209	1377	0	330	1820	0
Satd. Flow (RTOR)		5			10			86			9	
Lane Group Flow (vph)	73	699	0	261	731	0	39	369	0	104	191	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	O		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	14.0	49.0		14.0	49.0		13.0	29.0		13.0	29.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Effct Green (s)	53.2	42.7		58.7	47.4		33.1	23.6		37.4	29.2	
Actuated g/C Ratio	0.51	0.41		0.56	0.45		0.32	0.22		0.36	0.28	
v/c Ratio	0.19	0.49		0.64	0.46		0.09	0.98		0.43	0.37	
Control Delay	17.2	32.7		19.9	21.6		22.4	75.1		28.2	33.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	17.2	32.7		19.9	21.6		22.4	75.1		28.2	33.3	
LOS	B	C		B	C		C	E		C	C	
Approach Delay		31.3			21.1			70.0			31.5	
Approach LOS		C			C			E			C	
Queue Length 50th (ft)	24	223		84	177		17	~ 200		46	103	
Queue Length 95th (ft)	63	292		131	238		39	\#396		85	176	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	437	1433		408	1583		463	375		251	512	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.17	0.49		0.64	0.46		0.08	0.98		0.41	0.37	

Intersection Summary

Cycle Length: 105

Actuated Cycle Length: 105
Offset: 48 (46%), Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 33.6
Intersection LOS: C
Intersection Capacity Utilization 79.5\%
ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

	\rangle	\rightarrow			\downarrow		4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\hat{\square}$		7	\uparrow	「	\％	个 ${ }^{\text {P }}$		\％	中 ${ }^{\text {d }}$	
Volume（vph）	49	30	93	180	33	236	56	1529	244	180	1713	26
Satd．Flow（prot）	1805	1668	0	1770	1845	1599	1805	3459	0	1787	3532	0
Flt Permitted	0.735			0.454			0.057			0.054		
Satd．Flow（perm）	1395	1668	0	845	1845	1578	108	3459	0	102	3532	0
Satd．Flow（RTOR）		96				229		22			2	
Lane Group Flow（vph）	51	127	0	186	34	243	58	1828	0	186	1793	0
Turn Type	pm＋pt	NA		pm＋pt	NA	Perm	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	26.5		13.0	26.5	26.5	13.0	67.5		13.0	67.5	
Total Lost Time（s）	4.0	6.5		4.0	6.5	6.5	4.0	6.5		4.0	6.5	
Act Effct Green（s）	19.9	10.0		23.1	13.4	13.4	79.6	71.0		85.3	75.6	
Actuated g／C Ratio	0.17	0.08		0.19	0.11	0.11	0.66	0.59		0.71	0.63	
v／c Ratio	0.20	0.56		0.80	0.17	0.64	0.37	0.89		0.94	0.81	
Control Delay	38.6	25.5		67.8	50.6	16.0	19.7	22.7		79.3	21.9	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	3.8		0.0	0.6	
Total Delay	38.6	25.5		67.8	50.6	16.0	19.7	26.4		79.3	22.5	
LOS	D	C		E	D	B	B	C		E	C	
Approach Delay		29.3			39.4			26.2			27.8	
Approach LOS		C			D			C			C	
Queue Length 50th（ft）	33	23		130	25	10	13	272		90	515	
Queue Length 95th（ft）	62	80		\＃193	55	88	m19	m\＃896		\＃248	\＃845	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ ft ）	70			100		100	145			170		
Base Capacity（vph）	281	358		232	307	453	201	2054		198	2226	
Starvation Cap Reductn	0	0		0	0	0	0	161		0	0	
Spillback Cap Reductn	0	3		0	0	0	0	0		0	144	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.18	0.36		0.80	0.11	0.54	0.29	0.97		0.94	0.86	
Intersection Summary												

Cycle Length： 120

Actuated Cycle Length： 120
Offset： 2 （2\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green
Control Type：Actuated－Coordinated

Maximum v／c Ratio： 0.94

Intersection Signal Delay： 28.4
Intersection LOS：C
Intersection Capacity Utilization 95．4\％
ICU Level of Service F
Analysis Period（min） 15
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：11：Randall Rd \＆Prairie St

Prairie Centre 11：15 am 4／16／2016 Existing 2016

APPENDIX F

Synchro Analysis Reports
2026 Base Traffic

1. Weekday AM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
2. Weekday PM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
3. Saturday Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street

1: Randall Rd \& IL Route 38

Splits and Phases: 1: Randall Rd \& IL Route 38

[^1]Synchro 8 Report

	4						4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	个t		\%	F		${ }^{7}$	\uparrow	F
Volume (vph)	9	876	74	32	456	1	36	2	53	6	1	1
Satd. Flow (prot)	1770	3497	0	1770	3539	0	1770	1593	0	1770	1863	1583
Flt Permitted	0.470			0.252			0.757			0.718		
Satd. Flow (perm)	875	3497	0	469	3539	0	1410	1593	0	1337	1863	1583
Satd. Flow (RTOR)		14						58				64
Lane Group Flow (vph)	10	1032	0	35	497	0	39	60	0	7	1	1
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	15.0	81.0		16.0	82.0		23.0	23.0		23.0	23.0	23.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	100.1	95.0		101.9	98.9		10.8	10.8		10.8	10.8	10.8
Actuated g/C Ratio	0.83	0.79		0.85	0.82		0.09	0.09		0.09	0.09	0.09
v/c Ratio	0.01	0.37		0.08	0.17		0.31	0.31		0.06	0.01	0.00
Control Delay	2.2	5.7		1.8	2.4		56.6	17.3		49.3	48.0	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.2	5.7		1.8	2.4		56.6	17.3		49.3	48.0	0.0
LOS	A	A		A	A		E	B		D	D	A
Approach Delay		5.7			2.3			32.8			43.7	
Approach LOS		A			A			C			D	
Queue Length 50th (ft)	1	139		2	23		29	1		5	1	0
Queue Length 95th (ft)	4	199		6	42		63	43		20	6	0
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	833	2770		535	2916		199	275		189	263	279
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0			0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.01	0.37		0.07	0.17		0.20	0.22		0.04	0.00	0.00
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $6(5 \%)$, Referenced to phase 2:EBTL and 6 :WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.37
Intersection Signal Delay: 6.4
Intersection LOS: A
Intersection Capacity Utilization 45.7\%
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

| Lane Group | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SWR

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $20(17 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 23.5 Intersection LOS: C
Intersection Capacity Utilization 70.0\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 3: 14th St \& IL Route 38

11: Randall Rd \& Prairie St

	$\stackrel{*}{ }$	\rightarrow		7			4	\dagger	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\hat{\beta}$		\%	\uparrow	$\overline{7}$	\%	个t		\%	性	
Volume (vph)		6	19	144	11	151	16	1270	128	131	1432	12
Satd. Flow (prot)	1770	1652	0	1770	1863	1583	1770	3490	0	1770	3536	0
Flt Permitted	0.755			0.430			0.121			0.103		
Satd. Flow (perm)	1406	1652	0	801	1863	1583	225	3490	0	192	3536	0
Satd. Flow (RTOR)		21				144		13			1	
Lane Group Flow (vph)	4	28	0	157	12	164	17	1519	0	142	1570	0
Turn Type	pm+pt	NA		pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split (s)	13.0	15.0		19.0	21.0	19.0	13.0	87.0		19.0	93.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green (s)	11.6	7.3		22.7	18.2	34.0	101.4	93.5		109.3	102.9	
Actuated g/C Ratio	0.08	0.05		0.16	0.13	0.24	0.72	0.67		0.78	0.74	
v/c Ratio	0.03	0.26		0.69	0.05	0.33	0.08	0.65		0.56	0.60	
Control Delay	44.8	35.8		68.3	51.3	9.9	2.4	4.4		15.3	12.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.2		0.0	0.0	
Total Delay	44.8	35.8		68.3	51.3	9.9	2.4	4.6		15.3	12.1	
LOS	D	D		E	D	A	A	A		B	B	
Approach Delay		37.0			38.9			4.5			12.4	
Approach LOS		D			D			A			B	
Queue Length 50th (ft)	3	6		126	9	13	1	60		33	341	
Queue Length 95th (ft)	14	39		197	31	71	m2	82		72	538	
Internal Link Dist (ft)		187			212			597			526	
Turn Bay Length (ft)	70			100		100	145			170		
Base Capacity (vph)	176	120		238	264	552	267	2335		319	2599	
Starvation Cap Reductn	0	0		0	0	0	0	185		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.23		0.66	0.05	0.30	0.06	0.71		0.45	0.60	

Cycle Length: 140

Actuated Cycle Length: 140
Offset: $0(0 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.69
Intersection Signal Delay: 11.7 Intersection LOS: B
Intersection Capacity Utilization $75.3 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 11: Randall Rd \& Prairie St

1：Randall Rd \＆IL Route 38

							4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}{ }^{\text {\％}}$	个个	「	\％${ }^{1 / 1}$	个4	「	${ }^{1+1}$	个个	「	${ }^{17}$	个个	7
Volume（vph）	298	368	87	138	584	399	111	1225	54	273	1231	290
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Satd．Flow（RTOR）			97			97			132			62
Lane Group Flow（vph）	324	400	95	150	635	434	121	1332	59	297	1338	315
Turn Type	Prot	NA	pm＋ov									
Protected Phases	5	2		，	6	7		，	，	7	4	5
Permitted Phases			2			6			8			4
Total Split（s）	20.0	39.0	13.0	15.0	34.0	19.0	13.0	67.0	15.0	19.0	73.0	20.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	15.3	33.0	47.8	10.0	27.7	48.5	8.3	60.7	77.2	14.3	66.7	88.5
Actuated g／C Ratio	0.11	0.24	0.34	0.07	0.20	0.35	0.06	0.43	0.55	0.10	0.48	0.63
v／c Ratio	0.86	0.48	0.16	0.61	0.91	0.71	0.60	0.87	0.06	0.85	0.79	0.31
Control Delay	83.7	48.5	6.2	74.4	72.5	37.7	76.8	43.4	0.1	86.8	26.2	6.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1	0.0	13.4	0.0	0.0	1.3	0.0
Total Delay	83.7	48.5	6.2	74.4	72.5	37.8	76.8	56.8	0.1	86.8	27.5	6.6
LOS	F	D	A	E	E	D	E	E	A	F	C	A
Approach Delay		57.5			60.4			56.2			33.2	
Approach LOS		E			E			E			C	
Queue Length 50th（ft）	151	167	0	69	301	270	56	573	0	130	565	62
Queue Length 95th（ft）	\＃230	221	38	107	\＃411	402	91	677	0	m\＃195	m399	m49
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ t ）	425		490				235		460	240		220
Base Capacity（vph）	380	835	607	257	700	613	208	1535	937	355	1686	1025
Starvation Cap Reductn	0	0	0	0	0	，	0	0	0	0	168	0
Spillback Cap Reductn	0	0	0	0	0	5	0	214	0		0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.85	0.48	0.16	0.58	0.91	0.71	0.58	1.01	0.06	0.84	0.88	0.31
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 0 （0\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.91												
Intersection Signal Delay： 49.2					Intersection LOS：D							
Intersection Capacity Utilization 84．6\％					ICU Level of Service E							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 4：30 pm 4／12／2016 2026 Projected Traffic

	\rangle			7			4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }_{\text {¢ }}$		\%	性		\%	F		${ }^{7}$	\uparrow	F
Volume (vph)	21	635	51	63	1060	9	53	2	66	22	4	8
Satd. Flow (prot)	1770	3500	0	1770	3536	0	1770	1591	0	1770	1863	1583
Flt Permitted	0.224			0.352			0.755			0.709		
Satd. Flow (perm)	417	3500	0	656	3536	0	1406	1591	0	1321	1863	1583
Satd. Flow (RTOR)		13			1			72				64
Lane Group Flow (vph)	23	745	0	68	1162	0	58	74	0	24	4	9
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	14.0	81.0		15.0	82.0		24.0	24.0		24.0	24.0	24.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	97.7	91.3		99.5	93.7		12.2	12.2		12.1	12.1	12.1
Actuated g/C Ratio	0.81	0.76		0.83	0.78		0.10	0.10		0.10	0.10	0.10
v/c Ratio	0.06	0.28		0.11	0.42		0.41	0.33		0.18	0.02	0.04
Control Delay	2.8	6.3		0.7	5.3		58.0	15.4		50.8	46.2	0.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.8	6.3		0.7	5.3		58.0	15.4		50.8	46.2	0.4
LOS	A	A		A	A		E	B		D	D	A
Approach Delay		6.2			5.1			34.1			38.1	
Approach LOS		A			A			C			D	
Queue Length 50th (ft)	3	96		1	223		43	1		17	3	0
Queue Length 95th (ft)	8	145		m2	435		84	46		43	14	0
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	469	2666		659	2760		210	299		198	279	291
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.05	0.28		0.10	0.42		0.28	0.25		0.12	0.01	0.03
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:EBTL and $6: W B T L$, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.42
Intersection Signal Delay: 7.8
Intersection LOS: A
Intersection Capacity Utilization 56.7\%
ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{*}$	中 ${ }^{\text {W }}$		${ }^{*}$	\uparrow		${ }^{*}$	$\hat{\beta}$	
Volume (vph)	103	629	38	241	959	81	67	171	207	130	208	56
Satd. Flow (prot)	1770	3511	0	1770	3497	0	1770	1710	0	1770	1803	0
Flt Permitted	0.129			0.239			0.446			0.182		
Satd. Flow (perm)	240	3511	0	445	3497	0	831	1710	0	339	1803	0
Satd. Flow (RTOR)		5			9			50			11	
Lane Group Flow (vph)	112	725	0	262	1130	0	73	411	0	141	287	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	44.0		23.0	54.0		13.0	40.0		13.0	40.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.5		3.5	6.5	
Act Effct Green (s)	56.4	44.8		66.2	51.2		42.1	30.9		44.5	33.9	
Actuated g/C Ratio	0.47	0.37		0.55	0.43		0.35	0.26		0.37	0.28	
v/c Ratio	0.50	0.55		0.64	0.75		0.21	0.86		0.59	0.56	
Control Delay	26.9	38.4		22.5	33.8		23.8	55.5		34.5	40.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	26.9	38.4		22.5	33.8		23.8	55.5		34.5	40.1	
LOS	C	D		C	C		C	E		C	D	
Approach Delay		36.8			31.6			50.7			38.3	
Approach LOS		D			C			D			D	
Queue Length 50th (ft)	55	280		108	401		34	263		69	181	
Queue Length 95th (ft)	92	347		162	493		65	\#419		114	275	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	235	1314		460	1497		374	513		239	521	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.48	0.55		0.57	0.75		0.20	0.80		0.59	0.55	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: 75 (63\%), Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.86
Intersection Signal Delay: $36.9 \quad$ Intersection LOS: D
Intersection Capacity Utilization $81.2 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: $\quad 3: 14$ th St \& IL Route 38

	\rangle							\uparrow			\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			
Lane Configurations	\％	\uparrow		\％	\uparrow	「	${ }^{7}$	㻢		7	性				
Volume（vph）	70	34	112	241	38	249	68	1606	197	165	1510	35			
Satd．Flow（prot）	1770	1649	0	1770	1863	1583	1770	3483	0	1770	3529	0			
FIt Permitted	0.730			0.303			0.092			0.048					
Satd．Flow（perm）	1360	1649	0	564	1863	1583	171	3483	0	89	3529	0			
Satd．Flow（RTOR）		106				89		14			2				
Lane Group Flow（vph）	76	159	0	262	41	271	74	1960	0	179	1679	0			
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	pm＋pt	NA		pm＋pt	NA				
Protected Phases	7	4		，	8	，	5	2		1	6				
Permitted Phases	4			8		8	2			6					
Total Split（s）	13.0	35.0		13.0	35.0	14.0	13.0	78.0		14.0	79.0				
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5				
Act Effct Green（s）	22.5	11.7		24.1	14.4	38.2	90.7	81.0		104.8	93.0				
Actuated g／C Ratio	0.16	0.08		0.17	0.10	0.27	0.65	0.58		0.75	0.66				
v／c Ratio	0.31	0.68		1.51	0.22	0.55	0.38	0.97		0.65	0.72				
Control Delay	49.7	36.8		291.5	60.6	32.7	10.5	28.6		43.3	19.0				
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	1.4		0.0	0.0				
Total Delay	49.7	36.8		291.5	60.6	32.7	10.5	30.0		43.3	19.0				
LOS	D	D		F	E	C	B	C		D	B				
Approach Delay		40.9			152.8			29.3			21.3				
Approach LOS		D			F			C			C				
Queue Length 50th（ft）	59	47		~ 283	36	146	13	361		101	486				
Queue Length 95th（ft）	101	119		\＃405	72	219	m19	\＃1183		187	727				
Internal Link Dist（ft）		187			212			597			526				
Turn Bay Length（tt）	70			100		100	145			170					
Base Capacity（vph）	251	420		174	379	496	220	2020		275	2343				
Starvation Cap Reductn	0	0		0	0	0	0	21		0	0				
Spillback Cap Reductn	0	0		0	0	0	0	0		0	31				
Storage Cap Reductn	0	0		0	0	0	0	0		0	0				
Reduced v／c Ratio	0.30	0.38		1.51	0.11	0.55	0.34	0.98		0.65	0.73				
Intersection Summary															
Cycle Length： 140															
Actuated Cycle Length： 140															
Offset： 0 （0\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green															
Control Type：Actuated－Coordinated															
Maximum v／c Ratio： 1.51															
Intersection Signal Delay： 41.8					Intersection LOS：D										
Intersection Capacity Utilization 99．3\％Analysis Period（min） 15					ICU Level of Service F										
					Analysis Period（min） 15										
～Volume exceeds capacity，queue is theoretically infinite．															
Queue shown is maximum after two cycles．															
\＃95th percentile volume exceeds capacity，queue may be longer．															
Queue shown is maximum after two cycles．															
m Volume for 95th perc	queue	metere	by ups	ream sig											

Splits and Phases：11：Randall Rd \＆Prairie St

1：Randall Rd \＆IL Route 38

	4			7			4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	个个	「	${ }^{7 \times 1}$	个个	「	${ }^{1+1}$	个4	「	\％${ }^{1 / 4}$	个个	F
Volume（vph）	394	465	118	194	347	334	116	1227	89	329	1506	301
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Satd．Flow（RTOR）			114			114			155			73
Lane Group Flow（vph）	428	505	128	211	377	363	126	1334	97	358	1637	327
Turn Type	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	5	2	3	1	6	7	3	8	1	7	4	5
Permitted Phases			2			6			8			
Total Split（s）	20.0	27.0	13.0	13.0	20.0	20.0	13.0	60.0	13.0	20.0	67.0	20.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effict Green（s）	15.5	20.5	35.2	8.5	13.5	35.1	8.2	53.9	68.9	15.1	60.8	82.8
Actuated g／C Ratio	0.13	0.17	0.29	0.07	0.11	0.29	0.07	0.45	0.57	0.13	0.51	0.69
v／c Ratio	0.97	0.84	0.23	0.87	0.95	0.67	0.54	0.84	0.10	0.83	0.91	0.29
Control Delay	87.3	61.4	8.5	87.3	86.8	31.9	62.7	35.3	0.5	71.3	20.4	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1	0.0	5.0	0.0	0.0	5.2	0.0
Total Delay	87.3	61.4	8.5	87.3	86.8	31.9	62.7	40.3	0.5	71.3	25.6	1.6
LOS	F	E	A	F	F	C	E	D	A	E	C	A
Approach Delay		65.5			65.9			39.7			29.3	
Approach LOS		E			E			D			C	
Queue Length 50th（ ft ）	172	201	8	85	154	170	49	473	0	140	416	12
Queue Length 95th（ ft ）	\＃275	\＃283	54	\＃154	\＃252	282	81	574	4	m157	m534	m12
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ft）	425		490				235		460	240		220
Base Capacity（vph）	443	604	548	243	398	548	243	1588	974	443	1792	1114
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	121	0
Spillback Cap Reductn	0	0	0	0	0	5	0	198	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	O
Reduced v／c Ratio	0.97	0.84	0.23	0.87	0.95	0.67	0.52	0.96	0.10	0.81	0.98	0.29
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $12(10 \%)$ ，Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.97												
Intersection Signal Delay： 44.5					intersection LOS：D							
Intersection Capacity Utilization 84．1\％					ICU Level of Service E							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 11：15 am 4／16／2016 2026 Projected Traffic

	4							4			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }_{\text {d }}$		\％	中 ${ }^{\text {b }}$		\％	\uparrow		\％	\uparrow	「
Volume（vph）	20	717	65	39	759	7	53	1	70	20	8	2
Satd．Flow（prot）	1770	3493	0	1770	3536	0	1770	1587	0	1770	1863	1583
Flt Permitted	0.332			0.312			0.752			0.707		
Satd．Flow（perm）	618	3493	0	581	3536	0	1401	1587	0	1317	1863	1583
Satd．Flow（RTOR）		14			1			76				73
Lane Group Flow（vph）	22	850	0	42	833	0	58	77	0	22	9	2
Turn Type	pm＋pt	NA		pm＋pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split（s）	15.0	64.0		16.0	65.0		25.0	25.0		25.0	25.0	25.0
Total Lost Time（s）	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green（s）	84.2	79.0		85.4	81.0		11.6	11.6		11.6	11.6	11.6
Actuated g／C Ratio	0.80	0.75		0.81	0.77		0.11	0.11		0.11	0.11	0.11
v／c Ratio	0.04	0.32		0.08	0.31		0.37	0.32		0.15	0.04	0.01
Control Delay	2.9	6.6		1.4	2.9		49.2	13.4		43.0	40.0	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.9	6.6		1.4	2.9		49.2	13.4		43.0	40.0	0.0
LOS	A	A		A	A		D	B		D	D	A
Approach Delay		6.5			2.8			28.8			39.6	
Approach LOS		A			A			C			D	
Queue Length 50th（ft）	2	111		2	31		37	1		14	6	0
Queue Length 95th（ft）	8	167		m4	71		75	42		36	20	0
Internal Link Dist（ft）		440			624			190			310	
Turn Bay Length（ ft ）	170			215			65			100		100
Base Capacity（vph）	635	2630		620	2729		253	349		238	337	346
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v／c Ratio	0.03	0.32		0.07	0.31		0.23	0.22		0.09	0.03	0.01
Intersection Summary												
Cycle Length： 105												
Actuated Cycle Length： 105												
Offset： $57(54 \%)$ ，Referenced to phase 2：EBTL and 6：WBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.37												
Intersection Signal Delay： 6.9				Intersection LOS：A								
Intersection Capacity Utilization 48．6\％				ICU Level of Service A								
Analysis Period（min） 15												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：2：IL Route 38 \＆W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		\%	个t		7	F		\%	F	
Volume (vph)	75	690	43	268	699	60	55	130	254	108	166	32
Satd. Flow (prot)	1770	3507	0	1770	3497	0	1770	1678	0	1770	1818	0
Flt Permitted	0.285			0.168			0.592			0.191		
Satd. Flow (perm)	531	3507	0	313	3497	0	1103	1678	0	356	1818	0
Satd. Flow (RTOR)		6			9			99			10	
Lane Group Flow (vph)	82	797	0	291	825	0	60	417	0	117	215	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	39.0		13.0	39.0		13.0	40.0		13.0	40.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	44.5	33.6		54.0	42.7		37.8	27.8		41.1	31.1	
Actuated g/C Ratio	0.42	0.32		0.51	0.41		0.36	0.26		0.39	0.30	
v / C Ratio	0.26	0.71		0.79	0.58		0.13	0.81		0.45	0.40	
Control Delay	15.9	30.8		37.2	28.4		17.6	39.3		23.8	30.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.9	30.8		37.2	28.4		17.6	39.3		23.8	30.0	
LOS	B	C		D	C		B	D		C	C	
Approach Delay		29.4			30.7			36.6			27.8	
Approach LOS		C			C			D			C	
Queue Length 50th (ft)	27	168		109	233		24	201		48	110	
Queue Length 95th (ft)	50	210		\#316	333		45	300		77	169	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	345	1127		370	1428		478	610		267	597	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.24	0.71		0.79	0.58		0.13	0.68		0.44	0.36	

Intersection Summary

Cycle Length: 105

Actuated Cycle Length: 105
Offset: $60(57 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: 30.9
Intersection LOS: C
Intersection Capacity Utilization 80.8\%
ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		\％	\uparrow	「	＊	个 ${ }^{\text {a }}$		\％	中 ${ }^{\text {b }}$	
Volume（vph）	62	38	117	226	41	296	60	1625	259	191	1821	28
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	3465	0	1770	3532	0
FIt Permitted	0.728			0.305			0.060			0.056		
Satd．Flow（perm）	1356	1652	0	568	1863	1583	112	3465	0	104	3532	0
Satd．Flow（RTOR）		100				84		24			2	
Lane Group Flow（vph）	67	168	0	246	45	322	65	2048	0	208	2009	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	15.0		16.0	18.0	15.0	13.0	74.0		15.0	76.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	18.7	8.3		26.3	14.3	31.7	76.8	67.8		84.8	74.0	
Actuated g／C Ratio	0.16	0.07		0.22	0.12	0.26	0.64	0.56		0.71	0.62	
v／c Ratio	0.28	0.81		1.01	0.20	0.67	0.40	1.04		0.93	0.92	
Control Delay	41.2	52.3		103.3	52.7	37.6	15.6	46.4		74.6	29.9	
Queue Delay	0.0	0.5		0.0	0.0	0.0	0.0	0.6		0.0	2.4	
Total Delay	41.2	52.8		103.3	52.7	37.6	15.6	47.0		74.6	32.3	
LOS	D	D		F	D	D	B	D		E	C	
Approach Delay		49.5			65.1			46.1			36.3	
Approach LOS		D			E			D			D	
Queue Length 50th（ft）	42	52		～173	33	171	13	~ 883		108	711	
Queue Length 95th（ft）	83	\＃169		\＃310	71	282	m22	1014		\＃259	\＃972	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ ft ）	70			100		100	145			170		
Base Capacity（vph）	255	209		244	222	481	198	1967		226	2177	
Starvation Cap Reductn	0	0		0	0	0	0	3		0	0	
Spillback Cap Reductn	0	2		0	0	0	0	0		0	91	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.26	0.81		1.01	0.20	0.67	0.33	1.04		0.92	0.96	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 0 （0\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.04												
Intersection Signal Delay： 44.3					Intersection LOS：D							
Intersection Capacity Utilization 103．0\％					ICU Level of Service G							
Analysis Period（min） 15												
～Volume exceeds capacity，queue is theoretically infinite．												
Queue shown is maximum after two cycles．												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：11：Randall Rd \＆Prairie St

APPENDIX G

Synchro Analysis Reports
2026 Total Traffic
No Improvements

1. Weekday AM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
2. Weekday PM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
3. Saturday Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street

1：Randall Rd \＆IL Route 38

	\rangle					4	4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％${ }^{*}$	个个	F	\％${ }^{1 / 1}$	个个	F	\％${ }^{1+1}$	个4	F	\％${ }^{1+1}$	个4	F
Volume（vph）	242	623	39	181	300	208	98	1012	129	365	1013	255
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Satd．Flow（RTOR）			132			226			132			131
Lane Group Flow（vph）	263	677	42	197	326	226	107	1100	140	397	1101	277
Turn Type	Prot	NA	Prot	Prot	NA	Prot	Prot	NA	pt＋ov	Prot	NA	pt＋ov
Protected Phases	5	2	2	1	6	－	3	8	81	7	，	45
Permitted Phases												
Total Split（s）	21.0	39.0	39.0	16.0	34.0	34.0	13.0	59.0		26.0	72.0	
Total Lost Time（s）	4.5	6.5	6.5	4.5	6.5	6.5	4.5	6.5		4.5	6.5	
Act Efft Green（s）	15.0	32.6	32.6	11.2	28.8	28.8	8.2	54.3	70.0	19.9	66.0	85.5
Actuated g／C Ratio	0.11	0.23	0.23	0.08	0.21	0.21	0.06	0.39	0.50	0.14	0.47	0.61
v / C Ratio	0.72	0.82	0.09	0.72	0.45	0.45	0.53	0.80	0.16	0.81	0.66	0.27
Control Delay	71.7	60.3	0.4	78.3	51.3	8.7	74.0	43.9	4.0	80.4	24.1	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.4	0.0
Total Delay	71.7	60.3	0.4	78.3	51.3	8.7	74.0	44.1	4.0	80.4	24.5	3.6
LOS	E	E	A	E	D	A	E	D	A	F	C	A
Approach Delay		60.8			45.6			42.3			33.8	
Approach LOS		E			D			D			C	
Queue Length 50th（ft）	120	310	0	91	138	0	49	474	4	183	345	14
Queue Length 95th（ft）	168	386	0	\＃136	190	71	82	567	40	254	253	m24
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（tt）	425		490				235		460	240		220
Base Capacity（vph）	404	824	469	281	727	504	208	1372	860	527	1668	1033
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	182	0
Spillback Cap Reductn	0	0	0	0	0	1	0	30	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.65	0.82	0.09	0.70	0.45	0.45	0.51	0.82	0.16	0.75	0.74	0.27
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： $130(93 \%)$ ，Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.82												
Intersection Signal Delay： 43.4					ntersection LOS：D							
Intersection Capacity Utilization 79．1\％ICU Level of Service D												
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th perc	queue	metere	by upst	am sig								

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 7：15 am 4／12／2016 2026 Total Traffic without Improvements

	4			\dagger			4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个 ${ }^{\text {b }}$		\%	个 ${ }^{\text {a }}$		\%	F		\%	\uparrow	T
Volume (vph)	182	879	74	32	480	46	36	2	53	79	1	194
Satd. Flow (prot)	1770	3497	0	1770	3493	0	1770	1593	0	1770	1863	1583
Flt Permitted	0.410			0.264			0.757			0.718		
Satd. Flow (perm)	764	3497	0	492	3493	0	1410	1593	0	1337	1863	1583
Satd. Flow (RTOR)		11			12			58				211
Lane Group Flow (vph)	198	1035	0	35	572	0	39	60	0	86	1	211
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	20.0	71.0		15.0	66.0		34.0	34.0		34.0	34.0	34.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	94.9	86.1		88.7	79.7		15.5	15.5		15.5	15.5	15.5
Actuated g/C Ratio	0.79	0.72		0.74	0.66		0.13	0.13		0.13	0.13	0.13
v/c Ratio	0.29	0.41		0.08	0.25		0.22	0.24		0.50	0.00	0.55
Control Delay	4.6	8.5		2.8	5.5		47.4	13.7		57.4	41.0	11.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	4.6	8.5		2.8	5.5		47.4	13.7		57.4	41.0	11.3
LOS	A	A		A	A		D	B		E	D	B
Approach Delay		7.9			5.3			27.0			24.7	
Approach LOS		A			A			C			C	
Queue Length 50th (ft)	29	163		3	47		28	1		63	1	0
Queue Length 95th (ft)	63	256		8	64		58	39		110	6	66
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	743	2512		507	2322		329	416		311	434	531
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.27	0.41		0.07	0.25		0.12	0.14		0.28	0.00	0.40
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $8(7 \%)$, Referenced to phase 2:EBTL and $6: W B T L$, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.55
Intersection Signal Delay: 10.3 Intersection LOS: B
Intersection Capacity Utilization 54.8\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	性		\%	个 ${ }^{\text {P }}$		${ }^{7}$	$\hat{\beta}$		\%	$\hat{\square}$	
Volume (vph)	73	966	19	95	495	47	24	85	221	100	98	34
Satd. Flow (prot)	1770	3529	0	1770	3493	0	1770	1662	0	1770	1790	0
Flt Permitted	0.397			0.162			0.665			0.192		
Satd. Flow (perm)	740	3529	0	302	3493	0	1239	1662	0	358	1790	0
Satd. Flow (RTOR)		2			10			106			14	
Lane Group Flow (vph)	79	1071	0	103	589	0	26	332	0	109	144	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	57.0		13.0	57.0		13.0	37.0		13.0	37.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Effct Green (s)	70.0	59.3		71.6	61.6		33.1	23.9		38.2	30.0	
Actuated g/C Ratio	0.58	0.49		0.60	0.51		0.28	0.20		0.32	0.25	
v / C Ratio	0.16	0.61		0.37	0.33		0.07	0.80		0.49	0.31	
Control Delay	10.3	19.5		14.7	19.3		25.3	44.8		35.1	34.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.3	19.5		14.7	19.3		25.3	44.8		35.1	34.7	
LOS	B	B		B	B		C	D		D	C	
Approach Delay		18.9			18.6			43.4			34.9	
Approach LOS		B			B			D			C	
Queue Length 50th (ft)	20	198		31	140		14	170		60	85	
Queue Length 95th (ft)	42	237		64	210		32	262		96	138	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	524	1744		298	1798		412	507		225	484	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.15	0.61		0.35	0.33		0.06	0.65		0.48	0.30	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $8(7 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: 24.0
Intersection LOS: C
Intersection Capacity Utilization 73.3\%
ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

	\Rightarrow							\dagger	7	＊	$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	$\stackrel{\rightharpoonup}{ }$		\％	\uparrow	「	\％	中 ${ }^{\text {c }}$		\％	性	
Volume（vph）	4	6	19	144	11	237	16	1307	146	176	1489	12
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	3486	0	1770	3536	0
Flt Permitted	0.750			0.431			0.118			0.084		
Satd．Flow（perm）	1397	1652	0	803	1863	1583	220	3486	0	156	3536	0
Satd．Flow（RTOR）		21				140		13			1	
Lane Group Flow（vph）	4	28	0	157	12	258	17	1580	0	191	1631	0
Turn Type	pm＋pt	NA		pm＋pt	NA	$\mathrm{pt}+\mathrm{v}$	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	81	5	2		1	6	
Permitted Phases	4			8			2			6		
Total Split（s）	13.0	18.0		16.0	21.0		13.0	83.0		23.0	93.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5		4.0	6.5		4.0	6.5	
Act Effct Green（s）	11.9	7.6		21.3	16.8	34.8	98.0	90.2		110.7	104.3	
Actuated g／C Ratio	0.08	0.05		0.15	0.12	0.25	0.70	0.64		0.79	0.74	
v／c Ratio	0.03	0.26		0.75	0.05	0.52	0.08	0.70		0.67	0.62	
Control Delay	46.2	35.1		76.5	53.2	22.4	1.8	4.7		29.3	11.5	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.2		0.0	0.0	
Total Delay	46.2	35.1		76.5	53.2	22.4	1.8	5.0		29.3	11.5	
LOS	D	D		E	D	C	A	A		C	B	
Approach Delay		36.5			43.2			5.0			13.4	
Approach LOS		D			D			A			B	
Queue Length 50th（ft）	3	6		130	9	84	0	43		66	332	
Queue Length 95th（ft）	14	39		200	31	174	m1	83		152	555	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ ft ）	70			100		100	145			170		
Base Capacity（vph）	178	154		211	245	540	259	2249		342	2634	
Starvation Cap Reductn	0	0		0	0	0	0	169		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.02	0.18		0.74	0.05	0.48	0.07	0.76		0.56	0.62	
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 0 （0\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.75												
Intersection Signal Delay： 13.4				Intersection LOS：B								
Intersection Capacity Utilization 79．3\％				ICU Level of Service D								
Analysis Period（min） 15												

Splits and Phases：11：Randall Rd \＆Prairie St

1: Randall Rd \& IL Route 38

Splits and Phases: 1: Randall Rd \& IL Route 38

Prairie Centre 4:30 pm 4/12/2016 2026 Total Traffic without Improvements

	4	\rightarrow			4		4	\uparrow		*	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	蚛		\%	$\hat{1}$		\%	\uparrow	F
Volume (vph)	212	650	51	63	1078	54	53	2	66	73	4	167
Satd. Flow (prot)	1770	3500	0	1770	3514	0	1770	1591	0	1770	1863	1583
Flt Permitted	0.173			0.363			0.755			0.709		
Satd. Flow (perm)	322	3500	0	676	3514	0	1406	1591	0	1321	1863	1583
Satd. Flow (RTOR)		13			6			72				182
Lane Group Flow (vph)	230	762	0	68	1231	0	58	74	0	79	4	182
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	25.0	82.0		13.0	70.0		25.0	25.0		25.0	25.0	25.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	95.8	85.1		88.7	79.2		14.2	14.2		14.2	14.2	14.2
Actuated g/C Ratio	0.80	0.71		0.74	0.66		0.12	0.12		0.12	0.12	0.12
v/c Ratio	0.60	0.31		0.12	0.53		0.35	0.29		0.51	0.02	0.52
Control Delay	10.3	7.5		1.6	3.6		53.2	13.9		60.0	44.0	12.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	10.3	7.5		1.6	3.6		53.2	13.9		60.0	44.0	12.3
LOS	B	A		A	A		D	B		E	D	B
Approach Delay		8.2			3.5			31.2			27.0	
Approach LOS		A			A			C			C	
Queue Length 50th (ft)	33	107		3	61		42	1		58	3	0
Queue Length 95th (ft)	69	161		m5	82		82	45		106	13	64
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	517	2486		602	2320		222	312		209	294	403
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.44	0.31		0.11	0.53		0.26	0.24		0.38	0.01	0.45
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $13(11 \%)$, Referenced to phase 2:EBTL and $6: W B T L$, Start of 1 st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.60
Intersection Signal Delay: 8.9
Intersection LOS: A
Intersection Capacity Utilization 67.7% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		\%	个t		7	\uparrow		7	\uparrow	
Volume (vph)	103	677	38	241	1052	81	67	171	207	149	208	56
Satd. Flow (prot)	1770	3511	0	1770	3500	0	1770	1710	0	1770	1803	0
Flt Permitted	0.099			0.219			0.433			0.163		
Satd. Flow (perm)	184	3511	0	408	3500	0	807	1710	0	304	1803	0
Satd. Flow (RTOR)		5			8			49			11	
Lane Group Flow (vph)	112	777	0	262	1231	0	73	411	0	162	287	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	46.0		23.0	56.0		13.0	38.0		13.0	38.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	57.6	46.1		67.3	52.4		40.8	30.1		43.4	33.3	
Actuated g/C Ratio	0.48	0.38		0.56	0.44		0.34	0.25		0.36	0.28	
v / C Ratio	0.56	0.57		0.66	0.80		0.21	0.88		0.72	0.57	
Control Delay	32.5	26.9		22.7	34.9		25.0	59.1		44.5	41.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	32.5	26.9		22.7	34.9		25.0	59.1		44.5	41.2	
LOS	C	C		C	C		C	E		D	D	
Approach Delay		27.6			32.7			54.0			42.4	
Approach LOS		C			C			D			D	
Queue Length 50th (ft)	38	187		104	441		35	269		82	184	
Queue Length 95th (ft)	94	231		156	541		67	\#437		\#145	280	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	215	1352		450	1532		359	491		225	507	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.52	0.57		0.58	0.80		0.20	0.84		0.72	0.57	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $12(10 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 35.8
Intersection LOS: D
Intersection Capacity Utilization 84.4\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

	4	\rightarrow					4	4	7	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	F		${ }^{7}$	\uparrow	「	\％	个 ${ }^{\text {a }}$		${ }^{7}$	个 ${ }^{\text {¢ }}$	
Volume（vph）	70	34	112	241	38	310	68	1638	222	244	1554	35
Satd．Flow（prot）	1770	1649	0	1770	1863	1583	1770	3476	0	1770	3529	0
FIt Permitted	0.730			0.301			0.074			0.050		
Satd．Flow（perm）	1360	1649	0	561	1863	1583	138	3476	0	93	3529	0
Satd．Flow（RTOR）		90				64		17			3	
Lane Group Flow（vph）	76	159	0	262	41	337	74	2021	0	265	1727	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	15.0		20.0	22.0	21.0	13.0	84.0		21.0	92.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	19.3	8.5		31.0	18.2	41.7	86.9	77.5		101.0	89.5	
Actuated g／C Ratio	0.14	0.06		0.22	0.13	0.30	0.62	0.55		0.72	0.64	
v／c Ratio	0.36	0.86		1.00	0.17	0.65	0.45	1.05		0.98	0.77	
Control Delay	50.1	67.3		106.5	58.7	42.2	14.8	49.5		92.2	21.4	
Queue Delay	0.0	0.5		0.0	0.0	0.0	0.0	5.6		0.0	0.1	
Total Delay	50.1	67.8		106.5	58.7	42.2	14.8	55.1		92.2	21.5	
LOS	D	E		F	E	D	B	E		F	C	
Approach Delay		62.1			69.6			53.7			30.9	
Approach LOS		E			E			D			C	
Queue Length 50th（ft）	57	63		220	35	226	14	~ 1027		190	570	
Queue Length 95th（ft）	104	\＃195		\＃369	73	341	m21	\＃1170		\＃375	702	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ t ）	70			100		100	145			170		
Base Capacity（vph）	220	184		262	242	516	192	1932		270	2257	
Starvation Cap Reductn	0	0		0	0	0	0	26		0	0	
Spillback Cap Reductn	0	1		0	0	0	0	0		0	45	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.35	0.87		1.00	0.17	0.65	0.39	1.06		0.98	0.78	
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 0 （0\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.05												
Intersection Signal Delay： 47.0					Intersection LOS：D							
Intersection Capacity Utilization 105．4\％ ICU Level of Service G Analysis Period（min） 15												
Queue shown is maximum after two cycles．												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

1：Randall Rd \＆IL Route 38

								\dagger	7		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1 *}$	个个	「	\％${ }^{1 / 8}$	个个	「	\％${ }^{1 / 4}$	个个	「	${ }^{*}{ }^{1 \%}$	个个	F
Volume（vph）	394	506	118	328	384	372	116	1251	205	380	1506	301
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.214			0.242			0.073			0.068		
Satd．Flow（perm）	773	3539	1583	875	3539	1583	264	3539	1583	246	3539	1583
Satd．Flow（RTOR）			114			73			114			90
Lane Group Flow（vph）	428	550	128	357	417	404	126	1360	223	413	1637	327
Turn Type	pm＋pt	NA	pm＋ov	pm＋pt	NA	pm＋ov	pm＋pt	NA	pm＋ov	pm＋pt	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	5	2	3	1	6	7	3	，	1	7	4	5
Permitted Phases	2		2	6		6	8		8	4		4
Total Split（s）	18.0	27.0	13.0	14.0	23.0	19.0	13.0	60.0	14.0	19.0	66.0	18.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	36.0	20.5	34.2	28.0	16.5	36.4	63.8	54.6	70.6	74.4	60.8	80.8
Actuated g／C Ratio	0.30	0.17	0.28	0.23	0.14	0.30	0.53	0.46	0.59	0.62	0.51	0.67
v／c Ratio	0.81	0.91	0.24	0.88	0.86	0.76	0.38	0.84	0.23	0.81	0.91	0.30
Control Delay	46.5	69.4	8.7	58.0	68.4	41.1	13.7	35.3	6.3	45.2	20.1	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.2	0.0	34.3	0.0	0.0	5.7	0.0
Total Delay	46.5	69.4	8.7	58.0	68.4	41.2	13.7	69.5	6.3	45.2	25.8	1.7
LOS	D	E	A	E	E	D	B	E	A	D	C	A
Approach Delay		53.5			55.9			57.2			25.9	
Approach LOS		D			E			E			C	
Queue Length 50th（ft）	135	222	8	110	168	232	18	488	36	109	411	7
Queue Length 95th（ft）	\＃193	\＃324	54	\＃167	\＃252	357	30	591	75	m124	m532	m9
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ ft ）	425		490				235		460	240		220
Base Capacity（vph）	531	604	548	406	487	544	367	1611	978	537	1793	1095
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	127	0
Spillback Cap Reductn	0	0	0	0	0	6	0	337	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.81	0.91	0.23	0.88	0.86	0.75	0.34	1.07	0.23	0.77	0.98	0.30
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 13 （11\％），Referenced to phase 4：SBTL and 8：NBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.91												
Intersection Signal Delay： 44.6					Intersection LOS：D							
Intersection Capacity Utilization 87．5\％					ICU Level of Service E							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 11：15 am 4／16／2016 2026 Total Traffic without Improvements Timing Plan：Sat

	\rangle	\rightarrow					4	\dagger		\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	个 ${ }^{\text {a }}$		7	\uparrow		\%	\uparrow	F
Volume (vph)	216	729	65	39	781	55	53	1	70	81	8	189
Satd. Flow (prot)	1770	3497	0	1770	3504	0	1770	1587	0	1770	1863	1583
Flt Permitted	0.261			0.328			0.752			0.707		
Satd. Flow (perm)	486	3497	0	611	3504	0	1401	1587	0	1317	1863	1583
Satd. Flow (RTOR)		14			9			76				205
Lane Group Flow (vph)	235	863	0	42	909	0	58	77	0	88	-	205
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		4
Total Split (s)	24.0	65.0		13.0	54.0		27.0	27.0		27.0	27.0	27.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	80.8	71.8		74.0	64.9		14.7	14.7		14.7	14.7	14.7
Actuated g/C Ratio	0.77	0.68		0.70	0.62		0.14	0.14		0.14	0.14	0.14
v/c Ratio	0.48	0.36		0.08	0.42		0.30	0.27		0.48	0.03	0.52
Control Delay	7.2	8.6		2.3	5.6		42.6	11.2		49.1	36.1	10.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	7.2	8.6		2.3	5.6		42.6	11.2		49.1	36.1	10.2
LOS	A	A		A	A		D	B		D	D	B
Approach Delay		8.3			5.4			24.7			22.3	
Approach LOS		A			A			C			C	
Queue Length 50th (ft)	33	124		3	61		36	1		56	5	0
Queue Length 95th (ft)	73	200		m6	87		70	40		99	19	60
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (t)	170			215			65			100		100
Base Capacity (vph)	624	2397		554	2167		280	378		263	372	480
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	O		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.38	0.36		0.08	0.42		0.21	0.20		0.33	0.02	0.43
Intersection Summary												

Cycle Length: 105

Actuated Cycle Length: 105
Offset: 60 (57%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.52
Intersection Signal Delay: 9.8
Intersection LOS: A
Intersection Capacity Utilization 60.2\% ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	性		7	个t		7	F		\%	F	
Volume (vph)	75	755	43	268	784	60	55	130	254	131	166	32
Satd. Flow (prot)	1770	3511	0	1770	3500	0	1770	1678	0	1770	1818	0
Flt Permitted	0.245			0.144			0.587			0.159		
Satd. Flow (perm)	456	3511	0	268	3500	0	1093	1678	0	296	1818	0
Satd. Flow (RTOR)		6			8			92			9	
Lane Group Flow (vph)	82	868	0	291	917	0	60	417	0	142	215	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	37.0		21.0	45.0		13.0	34.0		13.0	34.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	45.7	34.9		56.9	44.5		35.9	25.8		39.4	29.3	
Actuated g/C Ratio	0.44	0.33		0.54	0.42		0.34	0.25		0.38	0.28	
v / C Ratio	0.28	0.74		0.79	0.62		0.14	0.87		0.59	0.42	
Control Delay	14.5	32.8		35.3	27.2		19.9	48.1		31.0	32.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	14.5	32.8		35.3	27.2		19.9	48.1		31.0	32.8	
LOS	B	C		D	C		B	D		C	C	
Approach Delay		31.2			29.2			44.5			32.1	
Approach LOS		C			C			D			C	
Queue Length 50th (ft)	24	191		115	265		24	208		60	112	
Queue Length 95th (ft)	47	\#271		\#234	346		51	\#367		102	186	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	324	1170		395	1487		455	514		244	513	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.25	0.74		0.74	0.62		0.13	0.81		0.58	0.42	

Intersection Summary

Cycle Length: 105

Actuated Cycle Length: 105
Offset: $60(57 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 32.6
Intersection LOS: C
Intersection Capacity Utilization 83.9\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

	\rangle							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		\％	\uparrow	「	${ }^{17}$	性		\％	中 ${ }^{\text {b }}$	
Volume（vph）	62	38	117	226	41	370	60	1676	283	259	1884	28
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	3461	0	1770	3532	0
FIt Permitted	0.728			0.384			0.062			0.058		
Satd．Flow（perm）	1356	1652	0	715	1863	1583	115	3461	0	108	3532	0
Satd．Flow（RTOR）		100				83		25			2	
Lane Group Flow（vph）	67	168	0	246	45	402	65	2130	0	282	2078	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	15.0		15.0	17.0	18.0	13.0	72.0		18.0	77.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	18.8	8.3		23.5	12.2	29.5	74.7	65.7		86.2	75.0	
Actuated g／C Ratio	0.16	0.07		0.20	0.10	0.25	0.62	0.55		0.72	0.62	
v／c Ratio	0.28	0.81		1.04	0.24	0.89	0.40	1.12		1.04	0.94	
Control Delay	42.8	52.3		118.6	55.3	53.4	14.7	78.8		99.9	31.5	
Queue Delay	0.0	0.5		0.0	0.0	0.0	0.0	0.0		0.0	4.6	
Total Delay	42.8	52.8		118.6	55.3	53.4	14.7	78.8		99.9	36.0	
LOS	D	D		F	E	D	B	E		F	D	
Approach Delay		49.9			76.7			76.9			43.6	
Approach LOS		D			E			E			D	
Queue Length 50th（ft）	43	52		～187	34	203	12	～981		～182	750	
Queue Length 95th（ft）	84	\＃169		\＃368	72	\＃447	m17	\＃1127		\＃359	\＃1017	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ ft ）	70			100		100	145			170		
Base Capacity（vph）	245	209		236	200	451	197	1905		271	2208	
Starvation Cap Reductn	0	0		0	0	0	0	3		0	0	
Spillback Cap Reductn	0	2		0	0	0	0	0		0	101	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.27	0.81		1.04	0.23	0.89	0.33	1.12		1.04	0.99	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 0 （0\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.12												
Intersection Signal Delay： 61.4					Intersection LOS：E							
Intersection Capacity Utilization 108．9\％					ICU Level of Service G							
Analysis Period（min） 15												
～Volume exceeds capacity，queue is theoretically infinite．												
Queue shown is maximum after two cycles．												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

APPENDIX H

Synchro Analysis Reports
 2026 Total Traffic
 With Improvements

1. Weekday AM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
2. Weekday PM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
3. Saturday Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street

	\rangle						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％${ }^{17}$	个4	F	\％${ }^{1 / 4}$	个4	F	${ }^{7 *}$	个4	F	\％${ }^{*}$	个4	F
Volume（vph）	242	623	39	181	300	208	98	1012	129	365	1013	255
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Satd．Flow（RTOR）			155			219			155			135
Lane Group Flow（vph）	263	677	42	197	326	226	107	1100	140	397	1101	277
Turn Type	Prot	NA	Prot	Prot	NA	Prot	Prot	NA	pt＋ov	Prot	NA	pt＋ov
Protected Phases	5	2	2	1	6	6	3	8	81	7	，	45
Permitted Phases												
Total Split（s）	19.0	34.0	34.0	14.0	29.0	29.0	13.0	51.0		21.0	59.0	
Total Lost Time（s）	4.5	6.5	6.5	4.5	6.5	6.5	4.5	6.5		4.5	6.5	
Act Effct Green（s）	13.3	27.6	27.6	9.4	23.7	23.7	8.0	44.8	58.7	16.2	53.0	70.8
Actuated g／C Ratio	0.11	0.23	0.23	0.08	0.20	0.20	0.07	0.37	0.49	0.14	0.44	0.59
v / C Ratio	0.69	0.83	0.09	0.74	0.47	0.46	0.47	0.83	0.16	0.86	0.70	0.28
Control Delay	61.1	54.1	0.4	61.6	50.7	17.9	60.7	40.9	2.4	73.6	25.7	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.2	0.0
Total Delay	61.1	54.1	0.4	61.6	50.7	17.9	60.7	41.5	2.4	73.6	25.9	3.6
LOS	E	D	A	E	D	B	E	D	A	E	C	A
Approach Delay		53.7			43.7			39.0			33.1	
Approach LOS		D			D			D			C	
Queue Length 50th（ft）	101	264	0	79	135	39	41	405	0	165	337	17
Queue Length 95th（ft）	146	\＃342	0	\＃129	182	115	71	496	27	\＃242	294	36
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ t ）	425		490				235		460	240		220
Base Capacity（vph）	414	814	483	271	697	487	243	1322	855	472	1562	1003
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	，	65	0
Spillback Cap Reductn	0	0	0	0	0	3	0	46	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.64	0.83	0.09	0.73	0.47	0.47	0.44	0.86	0.16	0.84	0.74	0.28
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 10 （8\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.86												
Intersection Signal Delay： 40.5				Intersection LOS：D								
Intersection Capacity Utilization 79．1\％				ICU Level of Service D								
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maxim	after two	cycles．										

Splits and Phases：1：Randall Rd \＆IL Route 38

	\rangle	\rightarrow			4		4	\dagger		\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	性		\%	$\hat{\square}$		\%	\uparrow	F
Volume (vph)	182	879	74	32	480	46	36	2	53	79	1	194
Satd. Flow (prot)	1770	3497	0	1770	3493	0	1770	1593	0	1770	1863	1583
Flt Permitted	0.400			0.255			0.757			0.586		
Satd. Flow (perm)	745	3497	0	475	3493	0	1410	1593	0	1092	1863	1583
Satd. Flow (RTOR)		10			11			58				211
Lane Group Flow (vph)	198	1035	0	35	572	0	39	60	0	86	1	211
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		4
Total Split (s)	18.0	65.0		13.0	60.0		13.0	29.0		13.0	29.0	29.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	6.0
Act Effct Green (s)	90.1	81.1		83.2	74.0		19.0	10.0		21.3	13.1	13.1
Actuated g/C Ratio	0.75	0.68		0.69	0.62		0.16	0.08		0.18	0.11	0.11
v/c Ratio	0.31	0.44		0.09	0.26		0.16	0.32		0.35	0.00	0.58
Control Delay	1.5	2.8		5.1	9.1		38.4	17.7		43.1	47.0	13.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	1.5	2.8		5.1	9.1		38.4	17.7		43.1	47.0	13.5
LOS	A	A		A	A		D	B		D	D	B
Approach Delay		2.6			8.8			25.9			22.2	
Approach LOS		A			A			C			C	
Queue Length 50th (ft)	5	20		6	65		25	2		57	1	0
Queue Length 95th (ft)	m8	308		14	98		52	42		96	6	71
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (t)	170			215			65			100		100
Base Capacity (vph)	683	2366		445	2159		265	352		247	357	473
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.29	0.44		0.08	0.26		0.15	0.17		0.35	0.00	0.45
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $116(97 \%)$, Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.58
Intersection Signal Delay: 7.9
Intersection LOS: A
Intersection Capacity Utilization 54.8\%
ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route $38 \&$ W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		\%	中 ${ }^{\text {d }}$		7	\uparrow		\%	F	
Volume (vph)	73	966	19	95	495	47	24	85	221	100	98	34
Satd. Flow (prot)	1770	3529	0	1770	3493	0	1770	1662	0	1770	1790	0
Flt Permitted	0.397			0.162			0.665			0.192		
Satd. Flow (perm)	740	3529	0	302	3493	0	1239	1662	0	358	1790	0
Satd. Flow (RTOR)		2			10			106			14	
Lane Group Flow (vph)	79	1071	0	103	589	0	26	332	0	109	144	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	57.0		13.0	57.0		13.0	37.0		13.0	37.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	70.0	59.3		71.6	61.6		33.1	23.9		38.2	30.0	
Actuated g/C Ratio	0.58	0.49		0.60	0.51		0.28	0.20		0.32	0.25	
v / C Ratio	0.16	0.61		0.37	0.33		0.07	0.80		0.49	0.31	
Control Delay	4.3	7.8		14.7	19.3		25.3	44.8		35.1	34.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	4.3	7.8		14.7	19.3		25.3	44.8		35.1	34.7	
LOS	A	A		B	B		C	D		D	C	
Approach Delay		7.6			18.6			43.4			34.9	
Approach LOS		A			B			D			C	
Queue Length 50th (ft)	9	76		31	140		14	170		60	85	
Queue Length 95th (ft)	20	105		64	210		32	262		96	138	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	524	1744		298	1798		412	507		225	484	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.15	0.61		0.35	0.33		0.06	0.65		0.48	0.30	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $6(5 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: $18.7 \quad$ Intersection LOS: B
Intersection Capacity Utilization 73.3\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 3: 14th St \& IL Route 38

	4	\rightarrow			4			\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	F		${ }^{17}$	\uparrow	「	${ }^{1}$	性		\％	性	
Volume（vph）	4	6	19	144	11	237	16	1307	146	176	1489	12
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	3486	0	1770	3536	0
Flt Permitted	0.816			0.739			0.115			0.082		
Satd．Flow（perm）	1520	1652	0	1377	1863	1583	214	3486	0	153	3536	0
Satd．Flow（RTOR）		21				169		15			1	
Lane Group Flow（vph）	4	28	0	157	12	258	17	1580	0	191	1631	0
Turn Type	pm＋pt	NA		pm＋pt	NA	$\mathrm{pt}+\mathrm{v}$	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	81	5	2		1	6	
Permitted Phases	4			8			2			6		
Total Split（s）	13.0	18.0		14.0	19.0		13.0	70.0		18.0	75.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5		4.0	6.5		4.0	6.5	
Act Effct Green（s）	11.7	7.5		17.0	12.6	27.2	84.1	76.4		94.8	88.4	
Actuated g／C Ratio	0.10	0.06		0.14	0.10	0.23	0.70	0.64		0.79	0.74	
v／c Ratio	0.03	0.23		0.71	0.06	0.53	0.08	0.71		0.68	0.63	
Control Delay	38.5	30.0		65.4	47.5	16.1	1.9	4.9		28.8	11.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.3		0.0	0.0	
Total Delay	38.5	30.0		65.4	47.5	16.1	1.9	5.2		28.8	11.0	
LOS	D	C		E	D	B	A	A		C	B	
Approach Delay		31.1			35.1			5.2			12.8	
Approach LOS		C			D			A			B	
Queue Length 50th（ft）	3	5		114	8	53	1	37		54	253	
Queue Length 95th（ft）	12	35		173	28	118	m2	68		144	533	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ft）	70			100		100	145			170		
Base Capacity（vph）	213	177		251	222	503	273	2223		309	2605	
Starvation Cap Reductn	0	0		0	0	0	0	184		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.02	0.16		0.63	0.05	0.51	0.06	0.77		0.62	0.63	
Intersection Summary												

Cycle Length： 120

Actuated Cycle Length： 120
Offset： $24(20 \%)$ ，Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 0.71
Intersection Signal Delay： $12.3 \quad$ Intersection LOS：B
Intersection Capacity Utilization 79．3\％ICU Level of Service D
Analysis Period（min） 15
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：11：Randall Rd \＆Prairie St

1：Randall Rd \＆IL Route 38

							4	\dagger	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\％	个个	F	${ }^{7}$	个个	「	\％${ }^{1+1}$	个个	「	\％${ }^{*}$	个4	F
Volume（vph）	298	408	87	251	616	431	111	1250	176	317	1231	290
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Satd．Flow（RTOR）			73			73			73			73
Lane Group Flow（vph）	324	443	95	273	670	468	121	1359	191	345	1338	315
Turn Type	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	pm＋ov	Prot	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	5	2	3	1	，	7	3	8	1	7	4	5
Permitted Phases			2			6			8			4
Total Split（s）	16.0	30.0	13.0	16.0	30.0	17.0	13.0	57.0	16.0	17.0	61.0	16.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Efft Green（s）	11.5	23.5	38.2	11.5	23.5	42.5	8.2	50.5	68.5	12.5	54.8	72.8
Actuated g／C Ratio	0.10	0.20	0.32	0.10	0.20	0.35	0.07	0.42	0.57	0.10	0.46	0.61
v／c Ratio	0.99	0.64	0.17	0.83	0.97	0.77	0.52	0.91	0.20	0.97	0.83	0.32
Control Delay	101.1	49.2	10.6	62.1	61.1	37.4	62.1	43.2	8.1	86.3	20.0	6.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1	0.0	35.6	0.0	0.0	0.7	0.0
Total Delay	101.1	49.2	10.6	62.1	61.1	37.5	62.1	78.8	8.1	86.3	20.7	6.9
LOS	F	D	B	E	E	D	E	E	A	F	C	A
Approach Delay		64.4			53.5			69.5			29.8	
Approach LOS		E			D			E			C	
Queue Length 50th（ t ）	131	167	12	98	280	338	47	512	40	131	494	82
Queue Length 95th（ft）	\＃226	224	51	\＃176	\＃401	436	79	\＃659	78	m\＃197	m468	m103
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（tt）	425		490				235		460	240		220
Base Capacity（vph）	328	694	557	328	693	607	243	1489	934	357	1616	989
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	80	0
Spillback Cap Reductn	0	0	0	0	0	4	0	225	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.99	0.64	0.17	0.83	0.97	0.78	0.50	1.08	0.20	0.97	0.87	0.32
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 12 （10\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.99												
Intersection Signal Delay： 51.6					ntersection LOS：D							
Intersection Capacity Utilization 87．5\％					ICU Level of Service E							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th perc	queue	metere	d by upst	eam sig								

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 4：30 pm 4／12／2016 2026 Total Traffic with Improvements

	\rangle	\rightarrow			4		4	\dagger		\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	中 ${ }^{\text {¢ }}$		\%	性		\%	$\hat{\square}$		\%	\uparrow	F
Volume (vph)	212	650	51	63	1078	54	53	2	66	73	4	167
Satd. Flow (prot)	1770	3500	0	1770	3514	0	1770	1591	0	1770	1863	1583
Flt Permitted	0.150			0.363			0.755			0.681		
Satd. Flow (perm)	279	3500	0	676	3514	0	1406	1591	0	1269	1863	1583
Satd. Flow (RTOR)		11			,			72				182
Lane Group Flow (vph)	230	762	0	68	1231	0	58	74	0	79	4	182
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		4
Total Split (s)	24.0	73.0		13.0	62.0		13.0	21.0		13.0	21.0	21.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	6.0
Act Effct Green (s)	90.3	78.9		80.7	70.9		19.5	9.9		20.2	10.3	10.3
Actuated g/C Ratio	0.75	0.66		0.67	0.59		0.16	0.08		0.17	0.09	0.09
v/c Ratio	0.62	0.33		0.13	0.59		0.23	0.38		0.32	0.03	0.60
Control Delay	14.9	14.8		2.4	6.9		40.3	17.4		42.4	48.5	16.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	14.9	14.8		2.4	6.9		40.3	17.4		42.4	48.5	16.0
LOS	B	B		A	A		D	B		D	D	B
Approach Delay		14.8			6.7			27.4			24.4	
Approach LOS		B			A			C			C	
Queue Length 50th (ft)	85	214		4	83		38	2		52	3	0
Queue Length 95th (ft)	m119	m340		m8	130		71	47		90	14	67
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (t)	170			215			65			100		100
Base Capacity (vph)	464	2303		556	2077		263	261		255	232	357
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.50	0.33		0.12	0.59		0.22	0.28		0.31	0.02	0.51
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $19(16 \%)$, Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.62
Intersection Signal Delay: 12.4 Intersection LOS: B
Intersection Capacity Utilization 67.7% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		\%	个t		7	\uparrow		7	\uparrow	
Volume (vph)	103	677	38	241	1052	81	67	171	207	149	208	56
Satd. Flow (prot)	1770	3511	0	1770	3500	0	1770	1710	0	1770	1803	0
Flt Permitted	0.099			0.219			0.433			0.163		
Satd. Flow (perm)	184	3511	0	408	3500	0	807	1710	0	304	1803	0
Satd. Flow (RTOR)		5			8			49			11	
Lane Group Flow (vph)	112	777	0	262	1231	0	73	411	0	162	287	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	46.0		23.0	56.0		13.0	38.0		13.0	38.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	57.6	46.1		67.3	52.4		40.8	30.1		43.4	33.3	
Actuated g/C Ratio	0.48	0.38		0.56	0.44		0.34	0.25		0.36	0.28	
v / C Ratio	0.56	0.57		0.66	0.80		0.21	0.88		0.72	0.57	
Control Delay	39.6	19.3		22.7	34.9		25.0	59.1		44.5	41.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	39.6	19.3		22.7	34.9		25.0	59.1		44.5	41.2	
LOS	D	B		C	C		C	E		D	D	
Approach Delay		21.8			32.7			54.0			42.4	
Approach LOS		C			C			D			D	
Queue Length 50th (ft)	42	98		104	441		35	269		82	184	
Queue Length 95th (ft)	105	232		156	541		67	\#437		\#145	280	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	215	1352		450	1532		359	491		225	507	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.52	0.57		0.58	0.80		0.20	0.84		0.72	0.57	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $13(11 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 34.2
Intersection LOS: C
Intersection Capacity Utilization 84.4\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

								\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow		${ }^{7}$	\uparrow	「	＊	个t		${ }^{7}$	中 ${ }^{\text {c }}$	
Volume（vph）	70	34	112	241	38	310	68	1638	222	244	1554	35
Satd．Flow（prot）	1770	1649	0	1770	1863	1583	1770	3476	0	1770	3529	0
Flt Permitted	0.730			0.417			0.081			0.069		
Satd．Flow（perm）	1360	1649	0	777	1863	1583	151	3476	0	129	3529	0
Satd．Flow（RTOR）		106				127		19			3	
Lane Group Flow（vph）	76	159	0	262	41	337	74	2021	0	265	1727	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	pm＋p	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	15.0		15.0	17.0	18.0	13.0	72.0		18.0	77.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	18.8	8.2		23.2	11.9	29.2	68.3	65.8		75.9	73.4	
Actuated g／C Ratio	0.16	0.07		0.19	0.10	0.24	0.57	0.55		0.63	0.61	
v / C Ratio	0.31	0.75		1.09	0.22	0.70	0.38	1.06		0.97	0.80	
Control Delay	43.7	42.7		130.3	55.1	29.3	21.9	50.5		80.8	22.2	
Queue Delay	0.0	0.1		0.0	0.0	0.0	0.0	4.0		0.0	0.2	
Total Delay	43.7	42.8		130.3	55.1	29.3	21.9	54.5		80.8	22.4	
LOS	D	D		F	E	C	C	D		F	C	
Approach Delay		43.1			72.3			53.4			30.2	
Approach LOS		D			E			D			C	
Queue Length 50th（ft）	49	40		～211	31	123	19	~ 886		154	536	
Queue Length 95th（ft）	93	\＃142		\＃393	67	214	m22	1011		\＃330	646	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ t ）	70			100		100	145			170		
Base Capacity（vph）	246	215		241	199	481	207	1914		272	2159	
Starvation Cap Reductn	0	0		0	0	0	0	18		0	0	
Spillback Cap Reductn	0	1		0	0	0	0	0		0	51	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.31	0.74		1.09	0.21	0.70	0.36	1.07		0.97	0.82	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 106 （88\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.09												
Intersection Signal Delay： 46.0					Intersection LOS：D							
Intersection Capacity Utilization 105．4\％					ICU Level of Service G							
Analysis Period（min） 15												
～Volume exceeds capacity，queue is theoretically infinite．												
Queue shown is maximum after two cycles．												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th perc	queue	metere	by ups	eam sig								

1：Randall Rd \＆IL Route 38

							4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	个个	「	\％${ }^{1 / 8}$	个个	「	${ }^{1+1}$	个4	「	${ }^{\text {\％}}$	个个	F
Volume（vph）	394	506	118	328	384	372	116	1251	205	380	1506	301
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	3539	1583	3433	3539	1583
Flt Permitted	0.244			0.184			0.061			0.066		
Satd．Flow（perm）	882	3539	1583	665	3539	1583	220	3539	1583	239	3539	1583
Satd．Flow（RTOR）			97			62			97			70
Lane Group Flow（vph）	428	550	128	357	417	404	126	1360	223	413	1637	327
Turn Type	pm＋pt	NA	pm＋ov									
Protected Phases	5	2	3	1	6	7		8	1	7	4	5
Permitted Phases	2		2	6		6	8		8	4		4
Total Split（s）	20.0	31.0	13.0	17.0	28.0	21.0	13.0	71.0	17.0	21.0	79.0	20.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	41.8	24.5	38.4	36.2	21.7	43.5	75.1	65.6	84.6	87.5	73.6	95.4
Actuated g／C Ratio	0.30	0.18	0.27	0.26	0.16	0.31	0.54	0.47	0.60	0.62	0.53	0.68
v／c Ratio	0.79	0.89	0.25	0.85	0.76	0.76	0.44	0.82	0.22	0.83	0.88	0.30
Control Delay	49.8	73.7	13.1	47.5	55.2	43.2	18.3	37.5	7.7	50.3	19.4	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	4.3	0.0	2.0	0.0	0.0	8.8	0.0
Total Delay	49.8	73.7	13.1	47.5	55.2	47.5	18.3	39.5	7.7	50.3	28.1	3.6
LOS	D	E	B	D	E	D	B	D	A	D	C	A
Approach Delay		57.5			50.2			33.8			28.6	
Approach LOS		E			D			C			C	
Queue Length 50th（ft）	158	260	21	128	196	317	21	561	48	120	524	28
Queue Length 95th（ft）	208	\＃359	73	\＃187	257	436	38	662	89	m138	m648	m43
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ft）	425		490				235		460	240		220
Base Capacity（vph）	547	619	516	419	547	547	314	1658	995	525	1859	1102
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	212	0
Spillback Cap Reductn	0	0	0	0	0	83	0	169	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.78	0.89	0.25	0.85	0.76	0.87	0.40	0.91	0.22	0.79	0.99	0.30
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： $19(14 \%)$ ，Referenced to phase 4：SBTL and 8：NBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.89												
Intersection Signal Delay： 39.0					intersection LOS：D							
Intersection Capacity Utilization 87．5\％					ICU Level of Service E							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 11：15 am 4／16／2016 2026 Total Traffic with Improvements
Synchro 8 Report Timing Plan：Sat

	\star				4		4	\dagger		*	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }_{\text {¢ }}$		\%	中 ${ }^{\text {c }}$		\%	\uparrow		\%	\uparrow	F
Volume (vph)	216	729	65	39	781	55	53	1	70	81	8	189
Satd. Flow (prot)	1770	3497	0	1770	3504	0	1770	1587	0	1770	1863	1583
Flt Permitted	0.262			0.317			0.752			0.608		
Satd. Flow (perm)	488	3497	0	590	3504	0	1401	1587	0	1133	1863	1583
Satd. Flow (RTOR)		11			7			76				205
Lane Group Flow (vph)	235	863	0	42	909	0	58	77	0	88	9	205
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		,	8		7	4	
Permitted Phases	2			.			8			4		4
Total Split (s)	29.0	84.0		13.0	68.0		13.0	30.0		13.0	30.0	30.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	6.0
Act Effct Green (s)	107.5	96.5		99.7	90.4		21.4	10.4		23.0	12.9	12.9
Actuated g/C Ratio	0.77	0.69		0.71	0.65		0.15	0.07		0.16	0.09	0.09
v/c Ratio	0.50	0.36		0.09	0.40		0.25	0.41		0.39	0.05	0.62
Control Delay	15.8	22.9		2.5	5.6		49.8	19.0		53.5	58.5	15.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	15.8	22.9		2.5	5.6		49.8	19.0		53.5	58.5	15.9
LOS	B	C		A	A		D	B		D	E	B
Approach Delay		21.4			5.5			32.2			28.2	
Approach LOS		C			A			C			C	
Queue Length 50th (ft)	107	346		3	67		46	1		71	8	0
Queue Length 95th (ft)	m193	m426		m8	90		83	50		115	26	77
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	608	2414		513	2263		249	335		229	319	441
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.39	0.36		0.08	0.40		0.23	0.23		0.38	0.03	0.46
Intersection Summary												

Cycle Length: 140

Actuated Cycle Length: 140
Offset: 46 (33\%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.62
Intersection Signal Delay: $16.7 \quad$ Intersection LOS: B
Intersection Capacity Utilization 60.2\% ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		7	个t		7	F		\%	F	
Volume (vph)	75	755	43	268	784	60	55	130	254	131	166	32
Satd. Flow (prot)	1770	3511	0	1770	3500	0	1770	1678	0	1770	1818	0
Flt Permitted	0.257			0.179			0.551			0.144		
Satd. Flow (perm)	479	3511	0	333	3500	0	1026	1678	0	268	1818	0
Satd. Flow (RTOR)		4			7			70			7	
Lane Group Flow (vph)	82	868	0	291	917	0	60	417	0	142	215	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	51.0		29.0	67.0		13.0	46.0		14.0	47.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	66.3	55.1		81.0	66.3		46.3	35.6		50.6	39.7	
Actuated g/C Ratio	0.47	0.39		0.58	0.47		0.33	0.25		0.36	0.28	
v / C Ratio	0.27	0.63		0.74	0.55		0.16	0.87		0.68	0.41	
Control Delay	9.2	19.1		30.0	28.6		28.1	60.3		46.4	42.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	9.2	19.1		30.0	28.6		28.1	60.3		46.4	42.0	
LOS	A	B		C	C		C	E		D	D	
Approach Delay		18.3			29.0			56.2			43.8	
Approach LOS		B			C			E			D	
Queue Length 50th (ft)	17	141		134	317		34	304		85	154	
Queue Length 95th (ft)	28	171		226	401		65	432		\#134	229	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	318	1384		454	1661		399	529		209	537	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.26	0.63		0.64	0.55		0.15	0.79		0.68	0.40	

Intersection Summary

Cycle Length: 140

Actuated Cycle Length: 140
Offset: $40(29 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 31.7
Intersection LOS: C
Intersection Capacity Utilization 83.9\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

	4						4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		\％	\uparrow	「	\％	个 F		\％	中 ${ }^{\text {b }}$	
Volume（vph）	62	38	117	226	41	370	60	1676	283	259	1884	28
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	3461	0	1770	3532	0
FIt Permitted	0.728			0.301			0.051			0.047		
Satd．Flow（perm）	1356	1652	0	561	1863	1583	95	3461	0	88	3532	0
Satd．Flow（RTOR）		85				68		23			2	
Lane Group Flow（vph）	67	168	0	246	45	402	65	2130	0	282	2078	0
Turn Type	pm＋pt	NA		pm＋pt	NA	$\mathrm{pm}+\mathrm{ov}$	pm＋pt	NA		pm＋pt	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		
Total Split（s）	13.0	15.0		17.0	19.0	21.0	13.0	87.0		21.0	95.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	19.1	8.5		28.0	15.3	35.6	91.2	80.5		104.0	91.1	
Actuated g／C Ratio	0.14	0.06		0.20	0.11	0.25	0.65	0.58		0.74	0.65	
v／c Ratio	0.32	0.93		1.10	0.22	0.89	0.41	1.07		1.05	0.90	
Control Delay	51.4	83.2		137.1	62.5	58.4	24.2	58.9		116.5	28.5	
Queue Delay	0.0	2.9		0.0	0.0	0.0	0.0	1.3		0.0	3.8	
Total Delay	51.4	86.1		137.1	62.5	58.4	24.2	60.2		116.5	32.3	
LOS	D	F		F	E	E	C	E		F	C	
Approach Delay		76.2			86.6			59.1			42.3	
Approach LOS		E			F			E			D	
Queue Length 50th（ft）	51	77		～234	39	261	14	～1101		~ 225	839	
Queue Length 95th（ft）	96	\＃223		\＃370	81	\＃363	m16	\＃1244		\＃413	984	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ ft ）	70			100		100	145			170		
Base Capacity（vph）	220	180		224	203	453	170	1999		269	2299	
Starvation Cap Reductn	0	0		0	0	0	0	6		0	0	
Spillback Cap Reductn	0	3		0	0	0	0	0		0	160	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.30	0.95		1.10	0.22	0.89	0.38	1.07		1.05	0.97	
Intersection Summary												
Cycle Length： 140												
Actuated Cycle Length： 140												
Offset： 0 （0\％），Referenced to phase 2：NBTL and 6：SBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.10												
Intersection Signal Delay： 56.1					Intersection LOS：E							
Intersection Capacity Utilization 108．9\％					ICU Level of Service G							
Analysis Period（min） 15												
～Volume exceeds capacity，queue is theoretically infinite．												
Queue shown is maximum after two cycles．												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95 th percentile queue is metered by upstream signal．												

Splits and Phases：11：Randall Rd \＆Prairie St

APPENDIXI

Synchro Analysis Reports
 2026 Total Traffic

With Improvements and Randall Road Widening

1. Weekday AM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
2. Weekday PM Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street
3. Saturday Peak Hour
a. Randall Road \& IL Route 38
b. IL Route 38 \& West Mall Entrance
c. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
d. Randall Road \& Prairie Street

1：Randall Rd \＆IL Route 38

	4						4	4	$>$		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	¢	「	\％＊	¢ \uparrow	F	7＊＊	愅	F	${ }^{7} 1$	愅	F
Volume（vph）	242	623	39	181	300	208	98	1012	129	365	1013	255
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	5085	1583	3433	5085	1583
FIt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	5085	1583	3433	5085	1583
Satd．Flow（RTOR）			185			226			136			156
Lane Group Flow（vph）	263	677	42	197	326	226	107	1100	140	397	1101	277
Turn Type	Prot	NA	Prot	Prot	NA	Prot	Prot	NA	pt＋ov	Prot	NA	pt＋ov
Protected Phases	5	2	2	1	6	6	3	8	81	7	4	45
Permitted Phases												
Total Split（s）	17.0	31.0	31.0	13.0	27.0	27.0	13.0	36.0		20.0	43.0	
Total Lost Time（s）	4.5	6.5	6.5	4.5	6.5	6.5	4.5	6.5		4.5	6.5	
Act Efftt Green（s）	11.7	24.6	24.6	8.4	21.3	21.3	7.8	30.2	43.1	14.8	37.2	53.3
Actuated g／C Ratio	0.12	0.25	0.25	0.08	0.21	0.21	0.08	0.30	0.43	0.15	0.37	0.53
v／c Ratio	0.66	0.78	0.08	0.68	0.43	0.44	0.40	0.72	0.18	0.78	0.58	0.30
Control Delay	50.5	42.4	0.3	46.9	38.1	15.3	48.2	34.4	4.0	63.2	18.7	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	50.5	42.4	0.3	46.9	38.1	15.3	48.2	34.4	4.0	63.2	18.7	1.7
LOS	D	D	A	D	D	B	D	C	A	E	B	A
Approach Delay		42.8			33.5			32.3			26.0	
Approach LOS		D			C			C			C	
Queue Length 50th（ft）	82	212	0	43	112	33	34	230	1	134	164	9
Queue Length 95th（ft）	125	280	0	\＃94	145	108	60	282	36	\＃191	98	4
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ft）	425		490				235		460	240		220
Base Capacity（vph）	429	870	528	291	755	515	291	1535	760	532	1889	928
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.61	0.78	0.08	0.68	0.43	0.44	0.37	0.72	0.18	0.75	0.58	0.30
Intersection Summary												
Cycle Length： 100												
Actuated Cycle Length： 100												
Offset： 21 （21\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.78												
Intersection Signal Delay： 32.3				Intersection LOS：C								
Intersection Capacity Utilization 72．0\％				ICU Level of Service C								
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maxim	after two	cycles．										

Splits and Phases：1：Randall Rd \＆IL Route 38

	$\stackrel{ }{*}$	\rightarrow		7	4			4	7	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	性		\%	$\hat{1}$		\%	\uparrow	F
Volume (vph)	182	879	74	32	480	46	36	2	53	79	1	194
Satd. Flow (prot)	1770	3497	0	1770	3493	0	1770	1593	0	1770	1863	1583
Flt Permitted	0.388			0.247			0.757			0.578		
Satd. Flow (perm)	723	3497	0	460	3493	0	1410	1593	0	1077	1863	1583
Satd. Flow (RTOR)		11			12			58				211
Lane Group Flow (vph)	198	1035	0	35	572	0	39	60	0	86	1	211
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		4
Total Split (s)	14.0	50.0		13.0	49.0		13.0	24.0		13.0	24.0	24.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	6.0
Act Effct Green (s)	70.7	61.7		63.9	54.7		18.2	9.6		21.0	12.8	12.8
Actuated g/C Ratio	0.71	0.62		0.64	0.55		0.18	0.10		0.21	0.13	0.13
v / c Ratio	0.32	0.48		0.09	0.30		0.14	0.29		0.30	0.00	0.55
Control Delay	2.0	6.4		10.4	18.8		29.1	15.3		32.2	38.0	11.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	2.0	6.4		10.4	18.8		29.1	15.3		32.2	38.0	11.4
LOS	A	A		B	B		C	B		C	D	B
Approach Delay		5.7			18.3			20.7			17.5	
Approach LOS		A			B			C			B	
Queue Length 50th (ft)	5	221		6	74		20	1		44	1	0
Queue Length 95th (ft)	m8	282		28	187		42	37		78	6	63
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (t)	170			215			65			100		100
Base Capacity (vph)	626	2161		433	1915		312	334		292	342	462
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.32	0.48		0.08	0.30		0.13	0.18		0.29	0.00	0.46
Intersection Summary												

Cycle Length: 100

Actuated Cycle Length: 100
Offset: 14 (14\%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.55
Intersection Signal Delay: $11.3 \quad$ Intersection LOS: B
Intersection Capacity Utilization 54.8\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个 ${ }_{\text {S }}$		\%	中 ${ }^{\text {d }}$		7	\uparrow		\%	F	
Volume (vph)	73	966	19	95	495	47	24	85	221	100	98	34
Satd. Flow (prot)	1770	3529	0	1770	3493	0	1770	1662	0	1770	1790	0
Flt Permitted	0.382			0.146			0.665			0.218		
Satd. Flow (perm)	712	3529	0	272	3493	0	1239	1662	0	406	1790	0
Satd. Flow (RTOR)		2			11			124			16	
Lane Group Flow (vph)	79	1071	0	103	589	0	26	332	0	109	144	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	44.0		13.0	44.0		13.0	30.0		13.0	30.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	55.5	46.1		56.3	46.5		28.4	19.4		33.8	27.5	
Actuated g/C Ratio	0.56	0.46		0.56	0.46		0.28	0.19		0.34	0.28	
v / C Ratio	0.17	0.66		0.38	0.36		0.07	0.79		0.42	0.29	
Control Delay	6.4	12.4		14.7	19.7		20.0	36.9		26.5	26.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	6.4	12.4		14.7	19.7		20.0	36.9		26.5	26.9	
LOS	A	B		B	B		C	D		C	C	
Approach Delay		12.0			18.9			35.7			26.8	
Approach LOS		B			B			D			C	
Queue Length 50th (ft)	8	74		28	128		11	126		47	58	
Queue Length 95th (ft)	31	183		57	192		27	220		81	120	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	503	1626		297	1628		439	493		266	510	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.16	0.66		0.35	0.36		0.06	0.67		0.41	0.28	

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100
Offset: $24(24 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 18.9 Intersection LOS: B
Intersection Capacity Utilization 73.3\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

	4			7	\Perp		4	\uparrow			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	¢		\％	\uparrow	「	\％	个中献		${ }^{7}$	个中t	
Volume（vph）	4	－	19	144	11	237	16	1307	146	176	1489	12
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	5009	0	1770	5080	0
Flt Permitted	0.833			0.739			0.950			0.950		
Satd．Flow（perm）	1552	1652	0	1377	1863	1583	1770	5009	0	1770	5080	0
Satd．Flow（RTOR）		21				229		23			2	
Lane Group Flow（vph）	4	28	0	157	12	258	17	1580	0	191	1631	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pt＋ov	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8	81	5	2		1	6	
Permitted Phases	4			8								
Total Split（s）	13.0	17.0		13.0	17.0		13.0	47.0		23.0	57.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5		4.0	6.5		4.0	6.5	
Act Effct Green（s）	11.8	7.4		15.5	11.3	29.0	6.8	54.4		15.0	68.2	
Actuated g／C Ratio	0.12	0.07		0.16	0.11	0.29	0.07	0.54		0.15	0.68	
v／c Ratio	0.02	0.20		0.65	0.06	0.42	0.14	0.58		0.72	0.47	
Control Delay	30.2	25.1		51.0	38.8	6.0	28.6	5.6		55.4	10.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	30.2	25.1		51.0	38.8	6.0	28.6	5.6		55.4	10.1	
LOS	C	C		D	D	A	C	A		E	B	
Approach Delay		25.8			23.5			5.8			14.8	
Approach LOS		C			C			A			B	
Queue Length 50th（ft）	2	4		90	7	12	10	28		117	139	
Queue Length 95th（ft）	11	31		142	24	55	m15	373		184	305	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ft）	70			100		100	145			170		
Base Capacity（vph）	257	192		271	239	661	159	2734		336	3466	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.02	0.15		0.58	0.05	0.39	0.11	0.58		0.57	0.47	
Intersection Summary												
Cycle Length： 100												

Cycle Length： 100

Actuated Cycle Length： 100
Offset： 19 （19\％），Referenced to phase 2：NBT and 6：SBT，Start of 1st Green
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 0.72
Intersection Signal Delay： 12.2 Intersection LOS：B
Intersection Capacity Utilization 67．1\％ICU Level of Service C
Analysis Period（min） 15
m Volume for 95 th percentile queue is metered by upstream signal．

Splits and Phases：11：Randall Rd \＆Prairie St

1：Randall Rd \＆IL Route 38

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％${ }^{1}$	4 4	「	\％ 1	4 \uparrow	「	\％ 11	4乐	「	\％${ }^{17}$	¢44	F
Volume（vph）	298	408	87	251	616	431	111	1250	176	317	1231	290
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	5085	1583	3433	5085	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3433	3539	1583	3433	3539	1583	3433	5085	1583	3433	5085	1583
Satd．Flow（RTOR）			114			73			114			73
Lane Group Flow（vph）	324	443	95	273	670	468	121	1359	191	345	1338	315
Turn Type	Prot	NA	pm＋ov									
Protected Phases	5	2	3	1	6	7	3	8	1	7	4	5
Permitted Phases			2			6			8			4
Total Split（s）	19.0	32.0	13.0	20.0	33.0	21.0	13.0	47.0	20.0	21.0	55.0	19.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	14.1	27.1	41.8	13.9	26.9	48.9	8.2	41.5	61.9	15.5	48.8	69.4
Actuated g／C Ratio	0.12	0.23	0.35	0.12	0.22	0.41	0.07	0.35	0.52	0.13	0.41	0.58
v／c Ratio	0.80	0.56	0.15	0.69	0.84	0.68	0.52	0.77	0.22	0.78	0.65	0.33
Control Delay	67.5	44.6	3.8	48.0	43.5	32.4	62.1	38.9	7.0	62.3	18.3	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0
Total Delay	67.5	44.6	3.8	48.0	43.5	32.4	62.1	39.2	7.0	62.3	18.3	8.2
LOS	E	D	A	D	D	C	E	D	A	E	B	A
Approach Delay		48.7			40.7			37.2			24.3	
Approach LOS		D			D			D			C	
Queue Length 50th（ft）	127	162	0	90	279	337	47	346	29	107	322	94
Queue Length 95th（ft）	\＃190	220	27	139	\＃362	428	79	405	68	m164	347	m154
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ft）	425		490				235		460	240		220
Base Capacity（vph）	414	798	628	443	793	700	243	1756	891	472	2068	951
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	67	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.78	0.56	0.15	0.62	0.84	0.67	0.50	0.80	0.21	0.73	0.65	0.33

Intersection Summary

Cycle Length： 120

Actuated Cycle Length： 120
Offset： 10 （8\％），Referenced to phase 4：SBT and 8：NBT，Start of 1st Green
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 0.84
Intersection Signal Delay： 35.4
Intersection LOS：D
Intersection Capacity Utilization 77．1\％
ICU Level of Service D
Analysis Period（min） 15
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：1：Randall Rd \＆IL Route 38

Prairie Centre 4：30 pm 4／12／2016 2026 Total Traffic with Randall Widening
Synchro 8 Report Timing Plan：PM

	4			7			4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	个t		\%	F		${ }^{7}$	\uparrow	7
Volume (vph)	212	650	51	63	1078	54	53	2	66	73	4	167
Satd. Flow (prot)	1770	3500	0	1770	3514	0	1770	1591	0	1770	1863	1583
Flt Permitted	0.150			0.363			0.755			0.681		
Satd. Flow (perm)	279	3500	0	676	3514	0	1406	1591	0	1269	1863	1583
Satd. Flow (RTOR)		11			6			72				182
Lane Group Flow (vph)	230	762	0	68	1231	0	58	74	0	79	4	182
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		,	8		7	4	
Permitted Phases	2			6			8			4		4
Total Split (s)	24.0	73.0		13.0	62.0		13.0	21.0		13.0	21.0	21.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	6.0
Act Effct Green (s)	90.3	78.9		80.7	70.9		19.5	9.9		20.2	10.3	10.3
Actuated g/C Ratio	0.75	0.66		0.67	0.59		0.16	0.08		0.17	0.09	0.09
v/c Ratio	0.62	0.33		0.13	0.59		0.23	0.38		0.32	0.03	0.60
Control Delay	16.8	15.3		2.3	5.6		40.3	17.4		42.4	48.5	16.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	16.8	15.3		2.3	5.6		40.3	17.4		42.4	48.5	16.0
LOS	B	B		A	A		D	B		D	D	B
Approach Delay		15.7			5.4			27.4			24.4	
Approach LOS		B			A			C			C	
Queue Length 50th (ft)	85	192		4	73		38	2		52	3	0
Queue Length 95th (ft)	m131	345		m7	98		71	47		90	14	67
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	464	2303		556	2077		263	261		255	232	357
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.50	0.33		0.12	0.59		0.22	0.28		0.31	0.02	0.51
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $16(13 \%)$, Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.62
Intersection Signal Delay: 12.1 Intersection LOS: B
Intersection Capacity Utilization 67.7% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		\%	个 ${ }^{\text {a }}$		7	\uparrow		\%	F	
Volume (vph)	103	677	38	241	1052	81	67	171	207	149	208	56
Satd. Flow (prot)	1770	3511	0	1770	3500	0	1770	1710	0	1770	1803	0
Flt Permitted	0.099			0.219			0.433			0.163		
Satd. Flow (perm)	184	3511	0	408	3500	0	807	1710	0	304	1803	0
Satd. Flow (RTOR)		5			8			49			11	
Lane Group Flow (vph)	112	777	0	262	1231	0	73	411	0	162	287	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	46.0		23.0	56.0		13.0	38.0		13.0	38.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Efft Green (s)	57.6	46.1		67.3	52.4		40.8	30.1		43.4	33.3	
Actuated g/C Ratio	0.48	0.38		0.56	0.44		0.34	0.25		0.36	0.28	
v / C Ratio	0.56	0.57		0.66	0.80		0.21	0.88		0.72	0.57	
Control Delay	39.8	22.2		22.7	34.9		25.0	59.1		44.5	41.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	39.8	22.2		22.7	34.9		25.0	59.1		44.5	41.2	
LOS	D	C		C	C		C	E		D	D	
Approach Delay		24.4			32.7			54.0			42.4	
Approach LOS		C			C			D			D	
Queue Length 50th (ft)	45	106		104	441		35	269		82	184	
Queue Length 95th (ft)	105	260		156	541		67	\#437		\#145	280	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	215	1352		450	1532		359	491		225	507	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.52	0.57		0.58	0.80		0.20	0.84		0.72	0.57	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: 7 (6\%), Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 34.9
Intersection LOS: C
Intersection Capacity Utilization 84.4\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

	4							4			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	「	${ }^{7}$	个个官		${ }^{7}$	个中献	
Volume（vph）	70	34	112	241	38	310	68	1638	222	244	1554	35
Satd．Flow（prot）	1770	1649	0	1770	1863	1583	1770	4994	0	1770	5070	0
Flt Permitted	0.730			0.296			0.950			0.950		
Satd．Flow（perm）	1360	1649	0	551	1863	1583	1770	4994	0	1770	5070	0
Satd．Flow（RTOR）		107				127		25			4	
Lane Group Flow（vph）	76	159	0	262	41	337	74	2021	0	265	1727	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8						
Total Split（s）	13.0	16.0		20.0	23.0	26.0	14.0	58.0		26.0	70.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	19.2	8.7		31.0	18.4	45.3	9.2	54.1		20.5	67.3	
Actuated g／C Ratio	0.16	0.07		0.26	0.15	0.38	0.08	0.45		0.17	0.56	
v／c Ratio	0.31	0.73		0.87	0.14	0.50	0.55	0.89		0.88	0.61	
Control Delay	38.3	39.6		66.8	47.2	20.3	50.1	22.3		77.1	19.5	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	38.3	39.6		66.8	47.2	20.3	50.1	22.3		77.1	19.5	
LOS	D	D		E	D	C	D	C		E	B	
Approach Delay		39.2			41.0			23.3			27.1	
Approach LOS		D			D			C			C	
Queue Length 50th（ft）	45	39		175	28	121	58	227		199	335	
Queue Length 95th（ft）	87	\＃130		\＃281	63	211	m70	\＃255		\＃337	386	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ft）	70			100		100	145			170		
Base Capacity（vph）	259	229		304	285	695	147	2263		324	2846	
Starvation Cap Reductn	0	0		0	0	0	0	3		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.29	0.69		0.86	0.14	0.48	0.50	0.89		0.82	0.61	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $108(90 \%)$ ，Referenced to phase 2：NBT and 6：SBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.89												
Intersection Signal Delay： 27.9					Intersection LOS：C							
Intersection Capacity Utilization 89．6\％					ICU Level of Service E							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th perc	equeue	metere	by ups	eam sig								

Splits and Phases：11：Randall Rd \＆Prairie St

Prairie Centre 4：30 pm 4／12／2016 2026 Total Traffic with Randall Widening

1：Randall Rd \＆IL Route 38

	4						4	\uparrow	$>$		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7 \%}$	个4	F	\％${ }^{1+1}$	个 \uparrow	F	\％${ }^{1+1}$	个乐	「	\％${ }^{1+1}$	个个个	F
Volume（vph）	394	506	118	328	384	372	116	1251	205	380	1506	301
Satd．Flow（prot）	3433	3539	1583	3433	3539	1583	3433	5085	1583	3433	5085	1583
Flt Permitted	0.287			0.269			0.085			0.094		
Satd．Flow（perm）	1037	3539	1583	972	3539	1583	307	5085	1583	340	5085	1583
Satd．Flow（RTOR）			114			73			114			95
Lane Group Flow（vph）	428	550	128	357	417	404	126	1360	223	413	1637	327
Turn Type	pm＋pt	NA	pm＋ov									
Protected Phases	5	2	3	1	6	7	3	，	1	7	4	5
Permitted Phases	2		2	6		6	8		8	4		4
Total Split（s）	20.0	31.0	13.0	16.0	27.0	23.0	13.0	50.0	16.0	23.0	60.0	20.0
Total Lost Time（s）	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5
Act Effct Green（s）	41.2	24.5	38.4	34.5	21.1	42.4	56.7	47.3	65.2	68.5	54.8	76.0
Actuated g／C Ratio	0.34	0.20	0.32	0.29	0.18	0.35	0.47	0.39	0.54	0.57	0.46	0.63
v／c Ratio	0.66	0.76	0.22	0.70	0.67	0.67	0.37	0.68	0.24	0.72	0.71	0.32
Control Delay	34.1	52.9	7.7	27.7	42.4	34.2	16.3	32.7	8.1	30.4	15.4	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Total Delay	34.1	52.9	7.7	27.7	42.4	34.2	16.3	32.8	8.1	30.4	15.4	5.0
LOS	C	D	A	C	D	C	B	C	A	C	B	A
Approach Delay		40.4			35.1			28.4			16.6	
Approach LOS		D			D			C			B	
Queue Length 50th（ft）	125	213	7	77	168	276	21	319	40	62	390	62
Queue Length 95th（ft）	168	277	51	107	224	358	35	390	89	m113	397	m113
Internal Link Dist（ft）		670			319			781			597	
Turn Bay Length（ t ）	425		490				235		460	240		220
Base Capacity（vph）	672	722	597	516	622	653	369	2004	913	670	2320	1046
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	55	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.64	0.76	0.21	0.69	0.67	0.62	0.34	0.70	0.24	0.62	0.71	0.31
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 4 （3\％），Referenced to phase 4：SBTL and 8：NBTL，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.76												
Intersection Signal Delay： 27.3				Intersection LOS：C								
Intersection Capacity Utilization 77．1\％				ICU Level of Service D								
Analysis Period（min） 15				－								

Splits and Phases：1：Randall Rd \＆IL Route 38

[^2]Synchro 8 Report

	4	\rightarrow		7	4		4	\dagger			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个t		\%	个t		\%	F		${ }^{7}$	\uparrow	7
Volume (vph)	216	729	65	39	781	55	53	1	70	81	8	189
Satd. Flow (prot)	1770	3497	0	1770	3504	0	1770	1587	0	1770	1863	1583
Flt Permitted	0.253			0.316			0.752			0.543		
Satd. Flow (perm)	471	3497	0	589	3504	0	1401	1587	0	1011	1863	1583
Satd. Flow (RTOR)		11			7			76				205
Lane Group Flow (vph)	235	863	0	42	909	0	58	77	0	88	9	205
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		4
Total Split (s)	25.0	68.0		13.0	56.0		13.0	26.0		13.0	26.0	26.0
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	6.0
Act Effct Green (s)	90.0	79.0		82.3	73.0		18.8	10.2		20.6	10.6	10.6
Actuated g/C Ratio	0.75	0.66		0.69	0.61		0.16	0.08		0.17	0.09	0.09
v/c Ratio	0.50	0.37		0.09	0.43		0.24	0.38		0.38	0.05	0.63
Control Delay	9.2	13.8		4.1	8.3		40.2	16.5		43.7	48.8	15.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	9.2	13.8		4.1	8.3		40.2	16.5		43.7	48.8	15.7
LOS	A	B		A	A		D	B		D	D	B
Approach Delay		12.8			8.1			26.7			24.8	
Approach LOS		B			A			C			C	
Queue Length 50th (ft)	75	252		5	90		38	1		58	7	0
Queue Length 95th (ft)	m132	342		m10	121		70	45		98	22	70
Internal Link Dist (ft)		440			624			190			310	
Turn Bay Length (ft)	170			215			65			100		100
Base Capacity (vph)	586	2306		513	2133		263	327		236	310	434
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.40	0.37		0.08	0.43		0.22	0.24		0.37	0.03	0.47
Intersection Summary												

Cycle Length: 120

Actuated Cycle Length: 120
Offset: 15 (13\%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.63
Intersection Signal Delay: 13.2 Intersection LOS: B
Intersection Capacity Utilization 60.2\% ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 2: IL Route 38 \& W Mall Entrance

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个 ${ }^{\text {a }}$		\%	个 ${ }^{\text {a }}$		*	\uparrow		\%	\uparrow	
Volume (vph)	75	755	43	268	784	60	55	130	254	131	166	32
Satd. Flow (prot)	1770	3511	0	1770	3500	0	1770	1678	0	1770	1818	0
Flt Permitted	0.260			0.162			0.562			0.153		
Satd. Flow (perm)	484	3511	0	302	3500	0	1047	1678	0	285	1818	0
Satd. Flow (RTOR)		5			8			81			8	
Lane Group Flow (vph)	82	868	0	291	917	0	60	417	0	142	215	0
Turn Type	pm+pt	NA										
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6			8			4		
Total Split (s)	13.0	43.0		25.0	55.0		13.0	39.0		13.0	39.0	
Total Lost Time (s)	3.5	6.5		3.5	6.5		3.5	6.0		3.5	6.0	
Act Effct Green (s)	54.4	43.4		67.5	54.9		40.4	30.1		43.6	33.5	
Actuated g/C Ratio	0.45	0.36		0.56	0.46		0.34	0.25		0.36	0.28	
v / C Ratio	0.27	0.68		0.76	0.57		0.15	0.87		0.65	0.42	
Control Delay	9.4	22.6		31.1	27.0		23.7	52.9		38.9	37.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	9.4	22.6		31.1	27.0		23.7	52.9		38.9	37.0	
LOS	A	C		C	C		C	D		D	D	
Approach Delay		21.5			28.0			49.3			37.8	
Approach LOS		C			C			D			D	
Queue Length 50th (ft)	18	247		120	288		28	247		70	129	
Queue Length 95th (ft)	30	186		217	366		57	\#404		117	206	
Internal Link Dist (ft)		799			397			204			454	
Turn Bay Length (ft)	150			215			45			200		
Base Capacity (vph)	327	1273		432	1606		424	520		221	517	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.25	0.68		0.67	0.57		0.14	0.80		0.64	0.42	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120
Offset: $16(13 \%)$, Referenced to phase 2:SETL and 6:NWTL, Start of 1st Green
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 30.5
Intersection LOS: C
Intersection Capacity Utilization 83.9\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: 14th St \& IL Route 38

11：Randall Rd \＆Prairie St

	4						4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		\％	\uparrow	「	\％	个个觡		\％	个中解	
Volume（vph）	62	38	117	226	41	370	60	1676	283	259	1884	28
Satd．Flow（prot）	1770	1652	0	1770	1863	1583	1770	4973	0	1770	5075	0
FIt Permitted	0.728			0.305			0.950			0.950		
Satd．Flow（perm）	1356	1652	0	568	1863	1583	1770	4973	0	1770	5075	0
Satd．Flow（RTOR）		100				127		36			3	
Lane Group Flow（vph）	67	168	0	246	45	402	65	2130	0	282	2078	0
Turn Type	pm＋pt	NA		pm＋pt	NA	pm＋ov	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases	4			8		8						
Total Split（s）	13.0	15.0		18.0	20.0	25.0	14.0	62.0		25.0	73.0	
Total Lost Time（s）	4.0	6.5		4.0	6.5	4.0	4.0	6.5		4.0	6.5	
Act Effct Green（s）	18.7	8.3		28.8	16.4	43.4	9.1	56.1		20.5	69.5	
Actuated g／C Ratio	0.16	0.07		0.24	0.14	0.36	0.08	0.47		0.17	0.58	
v／c Ratio	0.28	0.81		0.89	0.18	0.62	0.49	0.91		0.93	0.71	
Control Delay	39.7	52.3		74.0	50.3	26.4	51.4	24.3		86.6	20.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	39.7	52.3		74.0	50.3	26.4	51.4	24.4		86.6	20.4	
LOS	D	D		E	D	C	D	C		F	C	
Approach Delay		48.7			44.8			25.2			28.3	
Approach LOS		D			D			C			C	
Queue Length 50th（ft）	41	52		169	32	179	51	258		217	424	
Queue Length 95th（ft）	81	\＃169		\＃279	70	294	m70	280		\＃379	484	
Internal Link Dist（ft）		187			212			597			526	
Turn Bay Length（ft）	70			100		100	145			170		
Base Capacity（vph）	255	209		276	254	659	147	2345		309	2939	
Starvation Cap Reductn	0	0		0	0	0	0	2		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v／c Ratio	0.26	0.80		0.89	0.18	0.61	0.44	0.91		0.91	0.71	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $100(83 \%)$ ，Referenced to phase 2：NBT and 6：SBT，Start of 1st Green												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.93												
Intersection Signal Delay： 30.0					Intersection LOS：C							
Intersection Capacity Utilization 92．3\％					ICU Level of Service F							
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．												
Queue shown is maximum after two cycles．												
m Volume for 95th perc	equeue	metere	by upst	ream sig								

Splits and Phases：11：Randall Rd \＆Prairie St

Prairie Centre 11：15 am 4／16／2016 2026 Total Traffic with Randall Widening Timing Plan：Sat

Synchro 8 Report
Page 4

APPENDIX J

CMAP Memo to St. Charles
Re: Traffic Projections
June 3, 2016

Chicago Metropolitan Agency for Planning

Chris Bong, P.E.
Development Engineering Division Manager
City of St. Charles
2 East Main Street
St. Charles, IL 60174
Subject: Prairie Centre
City of St. Charles
Dear Mr. Bong:
In response to a request made on your behalf and dated June 3, 2016, we have developed year 2040 average daily traffic (ADT) projections for the subject location.

ROAD SEGMENT	Year 2040 ADT
Randall Rd between IL 38 and Prairie St	42,000
IL 38 between Randall Rd and $14^{\mathrm{id}} \mathrm{St}$	17,000
Prairie St between Randall Rd and $3^{\mathrm{d}} \mathrm{St}$	5,000
$14^{4 \mathrm{~h}}$ St between IL 38 and Prairie St	6,000

Traffic projections are developed using existing ADT data provided in the request letter and the results from the March 2016 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2040 socioeconomic projections and assumes the implementation of the GO TO 2040 Comprehensive Regional Plan for the Northeastern Illinois area.

If you have any questions, please call me at (312) 386-8806.
Sincerely,

Jose Rodriguez, PTP, AICP
Senior Planner, Research \& Analysis

APPENDIX K

Memo from St. Charles

Re: Alternative Development Plan
January 29, 2009

ST. CHARLES
SINCE 1834

MEMO

TO: Diane Lukas, Hampton Lenzini Renwick

FROM: Russell Colby, Planner
CC: David Patzelt, Shodeen
Rita Tungare, Director of Community Development
RE: \quad St. Charles Towne Centre Traffic Impact Study- Alternative Development Plan
DATE: January 29, 2009

In conjunction with the second amendment to the traffic impact study for the St. Charles Towne Centre development, this memorandum provides a recommendation from City staff for an Alternative Development Plan for the site.

The Alternative Development plan is solely for the purpose of comparing the potential traffic impact of the proposed Towne Centre development to the potential traffic impact of the development of the site under the existing zoning classification.

For purposes of this analysis, the Alternative Development Plan represents the most intensive development of the site that would be reasonably possible as a retail-oriented development.

PROPOSED LAND USE

The BR Regional Business Zoning District permits a diverse range of commercial land uses. However, based upon the existing configuration of the property and the existing surrounding uses, the site is most likely to develop with one or more of the uses classified as "Retail and Service Uses", as listed in the St. Charles Zoning Ordinance, Table 17.14-1 Permitted and Special Uses.

For purposes of traffic trip generation, City staff recommends utilizing the Institute of Traffic Engineers Land Use category "Shopping Center" (Land Use \#820). This category represents an integrated development that may include a variety of individual land uses, all of which are permitted under the existing $B R$ zoning classification.

DEVELOPMENT SIZE

Site Area

The proposed development includes a detention area located in an existing PUD development. This property cannot be used as a part of the site area for a development under the existing zoning.

St. Charles Towne Centre Site Area	30.59 acres
$14^{\text {th }}$ St basin property (existing PUD)	2.39 acres (not available for development)
Net developable site area under BR	28.2 acres (1,228,392 square feet)

Square footage

The total square footage of buildings that can be accommodated on the site is regulated by the "Building Coverage" and "Building Height" standards contained in the St. Charles Zoning Ordinance, Table 17.142, Bulk Regulations.

- The Building Coverage standard limits the ground floor square footage of any building structures to no more than 30% of the total site area.
- The Maximum Building Height limits buildings to 40 ft . Depending on the use of the building, this could allow for a 2 or 3 story structure. For "Retail and Service" uses, the ceiling heights for each level are typically too high to accommodate three full levels within the 40 ft . height requirement. Therefore, the maximum possible building height is assumed to be 2 stories.

	BR Zoning Standard	BR standard applied to net developable site
Maximum Building Coverage	30% of lot area	$30 \% \times 1,228,392$ sf $=368,517$ square feet
Maximum Building Height	40 ft.	Approx. 2 stories for a Retail/Service use
Estimated Maximum Floor Area	1 story building: 368,517 square feet 2 story building (2 x 1 story building sf)	

Adjustment to Gross-Leasable Area

The ITE "Shopping Center" land use trip generation calculations apply to Gross Leasable Area of a Shopping Center, as opposed to the overall Gross Floor Area. Gross Leasable Area is commonly derived by taking 85% of the Gross Floor Area.

Estimated Max Gross Floor Area	Adjustment to Gross Leasible Area	Total square footage for purposes of traffic generation
737,034 square feet	85%	626,479 square feet

RECOMMENDATION

Staff recommends that for purposes of the second traffic study amendment for St. Charles Towne Centre, the Alternative Development Plan consist of a 626,479 sq. ft. Gross Leasable shopping center, categorized under ITE Land Use \#820.

APPENDIX L

ITE Land Use Diagrams

Weekday AM, Weekday PM, \& Saturday Peak Hours and Weekday Total

1. 220 - Apartment
2. 820 - Shopping Center
3. 826 - Specialty Retail Center (no Weekday AM Peak Hour)
4. 881 - Pharmacy/Drugstore with Drive-through Window
5. 932 - High-turnover (Sit-down) Restaurant
6. 934 - Fast-food Restaurant with Drive-through Window

Apartment (220)

Average Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
 Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 78
Avg. Number of Dwelling Units: 235
Directional Distribution: 20\% entering, 80% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.51	$0.10-1.02$	0.73

Data Plot and Equation

Average Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 90
Avg. Number of Dwelling Units: 233
Directional Distribution: 65\% entering, 35\% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.62	$0.10-1.64$	0.82

Data Plot and Equation

Apartment
 (220)

Average Vehicle Trip Ends vs: Dwelling Units
 On a: Saturday,
 Peak Hour of Generator

Number of Studies: 14

Avg. Number of Dwelling Units: 178
Directional Distribution: Not available

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.52	$0.26-1.05$	0.74

Data Plot and Equation

Fitted Curve Equation: $T=0.41(X)+19.23$
$\mathrm{R}^{2}=0.56$

Apartment
 (220)

Average Vehicle Trip Ends vs: Dwelling Units
 On a: Weekday

Number of Studies: 88
Avg. Number of Dwelling Units: 210
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
6.65	$1.27-12.50$	3.07

Data Plot and Equation

Shopping Center
 (820)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 104
Average 1000 Sq. Feet GLA: 310
Directional Distribution: 62\% entering, 38\% exiting
Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
0.96	$0.10-9.05$	1.31

Data Plot and Equation

Shopping Center (820)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area On a: Weekday,
 Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 426
Average 1000 Sq. Feet GLA: 376
Directional Distribution: 48\% entering, 52% exiting
Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
3.71	$0.68-29.27$	2.74

Data Plot and Equation

Shopping Center (820)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area
On a: Saturday, Peak Hour of Generator

Number of Studies:	128
Average 1000 Sq. Feet GLA:	458

Directional Distribution: 52\% entering, 48% exiting
Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
4.82	$1.46-18.32$	3.10

Data Plot and Equation

Shopping Center
 (820)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area On a: Weekday

Number of Studies: 302
Average 1000 Sq. Feet GLA: 331
Directional Distribution: 50\% entering, 50\% exiting

Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
42.70	$12.50-270.89$	21.25

Data Plot and Equation

Specialty Retail Center (826)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 5
Average 1000 Sq. Feet GLA: 69
Directional Distribution: 44\% entering, 56% exiting
Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
2.71	$2.03-5.16$	1.83

Data Plot and Equation Caution - Use Carefully - Small Sample Size

Specialty Retail Center

(826)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area On a: Saturday

Number of Studies: 3
Average 1000 Sq. Feet GLA: 28 Directional Distribution: 50\% entering, 50\% exiting

Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
42.04	$22.57-54.47$	13.97

Data Plot and Equation

Specialty Retail Center
 (826)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Leasable Area On a: Weekday

Number of Studies: 4
Average 1000 Sq. Feet GLA: 25
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per 1000 Sq. Feet Gross Leasable Area

Average Rate	Range of Rates	Standard Deviation
44.32	$21.30-64.21$	15.52

Data Plot and Equation

\times Actual Data Points
Fitted Curve Equation: $\mathbf{T}=\mathbf{4 2 . 7 8 (X)} \mathbf{+ 3 7 . 6 6}$

$$
R^{2}=0.69
$$

Pharmacy/Drugstore with Drive-Through Window (881)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 13
Average 1000 Sq. Feet GFA: 13
Directional Distribution: 52\% entering, 48% exiting
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
3.45	$1.93-5.92$	2.10

Data Plot and Equation

Pharmacy/Drugstore with Drive-Through Window (881)

Average Vehicle Trip Ends vs: 1000 Sq . Feet Gross Floor Area On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 31
Average 1000 Sq. Feet GFA: 14
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
9.91	$4.85-20.43$	5.04

Data Plot and Equation

Pharmacy/Drugstore with Drive-Through Window

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area
On a: Saturday,
Peak Hour of Generator

Number of Studies:	14
Average 1000 Sq. Feet GFA:	14
Directional Distribution:	49% entering, 51% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
8.20	$4.31-11.40$	3.57

Data Plot and Equation

Pharmacy/Drugstore with Drive-Through Window

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday

Number of Studies: 10
Average 1000 Sq. Feet GFA: 13
Directional Distribution: 50% entering, 50% exiting
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
96.91	$67.09-133.45$	21.59

Data Plot and Equation

High-Turnover (Sit-Down) Restaurant (932)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 24
Average 1000 Sq. Feet GFA: 6
Directional Distribution: 55\% entering, 45\% exiting
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
10.81	$2.32-25.60$	6.59

Data Plot and Equation

High-Turnover (Sit-Down) Restaurant

(932)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area
On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 60
Average 1000 Sq. Feet GFA: 6
Directional Distribution: 60\% entering, 40% exiting
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
9.85	$0.92-62.00$	8.54

Data Plot and Equation

High-Turnover (Sit-Down) Restaurant

 (932)Average Vehicle Trip Ends vs: 1000 Sa. Feet Gross Floor Area
On a: Saturday,
Peak Hour of Generator

Number of Studies: 8
Average 1000 Sq. Feet GFA: 4
Directional Distribution: 53% entering, 47% exiting
Trip Generation per 1000 Sc. Feet Gross Ploor Area

Average Rate	Range of Rates	Standard Deviation
14.07	$4.44-50.40$	12.19

Data Plot and Equation

[^3]Fitted Curve Equation: Not given
$R^{2}=* * * *$

High-Turnover (Sit-Down) Restaurant (932)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday

Number of Studies: 14
Average 1000 Sq. Feet GFA: 7
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
127.15	$73.51-246.00$	41.77

Data Plot and Equation

Fast-Food Restaurant with Drive-Through Window (934)

Average Vehicle Tun Ents us: 1000 Sq. Feet Gross Floor Area
On a: Neeleday,
 me hour soveen 7 and 9 arm.

Number of Sudies: 75

Average 1000 Sq . Feet GFA: A
Directional Distribution: 51% entering, 49% exiting
Trip Generation per 1000 Sg Feet Croms por ${ }^{\text {Guta }}$

Average Rate	Range of Rates	Standard Deviation
45.42	$1.02-163.33$	28.63

Data Plot ant Equation

Fast-Food Restaurant with Drive-Through Window (934)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area Ona: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies; 132
Average 1000 Sq. Feet GFA: 3
Directional Distribution: 52% entering, 48% exiting
Trip Generation per 1000 Sq. Feet Gross Ploor Area

Average Rate	Range of Rates	Standard Deviation
32.65	$7.96-117.15$	19.73

Data Plot and Equation

Fast-Food Restaurant with Drive-Through Window

 (934)Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area
On ${ }^{\text {a: }}$ Saturday,
Peak Hour of Generator

Number of Studies: 41
Average 1000 Sq . Feet GFA: 4
Directional Distribution: 51% entering, 49% exiting

Trip Generation per 1000 Sq. Feet Cross Fioor Area

Average Rate	Range of Rates	Standard Deviation
59.00	$19.21-122.49$	22.89

Data Plot and Equation

Fast-Food Restaurant with Drive-Through Window (934)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area Ona: Weekday

Number of Studies: 21
Average 1000 Sq. Feet GFA: 3
Directional Distribution: 50\% entering, 50% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
496.12	$195.98-1132.92$	242.52

Data Plot and Equation

APPENDIX M

Trip Generation Diagrams

1. Prairie Centre Site Generated Traffic
2. CVS Pharmacy
3. Alternate Development
(All trips generated using ITE's Trip Generation Manual, $9^{\text {th }}$ ed.)

AM Peak Hour	Land Use Type	Trip Generation	Development	Number of	Total	Directional	istribution		
Parcel	(ITE Code) ITE Land Use	Rate	Units	Units, X	Trips, T	Entering \%	Exiting \%	Entering	Exiting
Residential Units	(220) Apartment	$\mathrm{T}=0.49 \mathrm{X}+3.73$	Dwelling Units	609	302	20	80	60	242
Retail Units	(826) Specialty Retail Center	$\operatorname{Ln}(\mathrm{T})=0.61 \operatorname{Ln}(\mathrm{X})+2.24$	1000 SF	83.325	139	62	38	86	53
Sit-down Restaurants	(932) High-turnover (Sit-down) Restaurant	10.81	1000 SF	26.200	283	55	45	156	127
Fast-food Restaurants	(934) Fast-food Restaurant w/Drive-through Window	45.42	1000 SF	6.950	316	51	49	161	155
Note: Pass-by reduction not applied to Residential Units in any time period studied. Shopping Center (820) used for AM Peak Hour only for Retail Units. See report for explanation.			Total Trips:					463	577
			15\% Internal Capture:					(69)	(87)
			Total Trips at Development Driveways:					394	490
			5\%			Pass-by Adjustment:		(17)	(14)
			377	476					

PM Peak Hour	Land Use Type (ITE Code) ITE Land Use	$\begin{gathered} \hline \text { Trip Generation } \\ \text { Rate } \\ \hline \end{gathered}$	DevelopmentUnits	Number of Units, X	Total Trips, T	Directional Distribution		Trips	
Parcel						Entering \%	Exiting \%	Entering	Exiting
Residential Units	(220) Apartment	$\mathrm{T}=0.55 \mathrm{X}+17.65$	Dwelling Units	609	353	65	35	229	124
Retail Units	(826) Specialty Retail Center	$\mathrm{T}=2.40 \mathrm{x}+21.48$	1000 SF	83.325	221	44	56	97	124
Sit-down Restaurants	(932) High-turnover (Sit-down) Restaurant	9.85	1000 SF	26.200	258	60	40	155	103
Fast-food Restaurants	(934) Fast-food Restaurant w/Drive-through Window	32.65	1000 SF	6.950	227	52	48	118	109
			Total Trips:					599	460
			15\% Internal Capture:					(90)	(69)
			Total Trips at Development Driveways:					509	391
			5\%			Pass-by Adjustment:		(16)	(14)
						TOTAL New Trips:		493	377

Saturday Peak Hour	Land Use Type	Trip Generation	Development	Number of	Total	Directional	istribution		
Parcel	(ITE Code) ITE Land Use	Rate	Units	Units, X	Trips, T	Entering \%	Exiting \%	Entering	Exiting
Residential Units	(220) Apartment	0.52	Dwelling Units	609	317	50	50	159	158
Retail Units	(826) Specialty Retail Center	0.4204	1000 SF	83.325	35	50	50	18	17
Sit-down Restaurants	(932) High-turnover (Sit-down) Restaurant	14.07	1000 SF	26.200	369	53	47	196	173
Fast-food Restaurants	(934) Fast-food Restaurant w/Drive-through Window	59.00	1000 SF	6.950	410	51	49	209	201
Note: Specialty Retail Saturday Peak Hour Trip Generation Rate estimated as 10\% of Saturday whole day rate.			Total Trips:					582	549
			15\% Internal Capture:					(87)	(82)
			Total Trips at Development Driveways:					495	467
			5\%			Pass-by Adjustment:		(18)	(17)
			TOTAL New Trips:	477	450				

Weekday Total	Land Use Type (ITE Code) ITE Land Use	Trip GenerationRate	Development Units	Number of Units, X	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Trips, } T \\ \hline \end{array}$	Directional Distribution		Trips	
Parcel						Entering \%	Exiting \%	Entering	Exiting
Residential Units	(220) Apartment	$\mathrm{T}=6.06 \mathrm{x}+123.56$	Dwelling Units	609	3814	50	50	1907	1907
Retail Units	(826) Specialty Retail Center	44.32	1000 SF	83.325	3693	50	50	1847	1846
Sit-down Restaurants	(932) High-turnover (Sit-down) Restaurant	127.15	1000 SF	26.200	3331	50	50	1666	1665
Fast-food Restaurants	(934) Fast-food Restaurant w/Drive-through Window	496.12	1000 SF	6.950	3448	50	50	1724	1724
			Total Trips:					7144	7142
			15\% Internal Capture:					(1072)	(1071)
			Total Trips at Development Driveways:					6072	6071
			5\%			Pass-by Adjustment:		(223)	(222)
						TOTAL New Trips:		5849	5849

St Charles Prairie Centre
Trip Generation Table - CVS
(All trips generated using ITE's Trip Generation Manual, $9^{\text {th }}$ ed.)
6/7/2016

Saturday Peak Hour	Land Use Type	Trip Generation	Development	Number of	Total	Directional	istribution		
Parcel	(ITE Code) ITE Land Use	Rate	Units	Units, X	Trips, T	Entering \%	Exiting \%	Entering	Exiting
CVS	(881) Pharmacy/Drugstore w/Drive-through Window	8.20	1000 SF	13.225	108	49	51	53	55
CVS outlot	(826) Specialty Retail Center	0.4204	1000 SF	4.620	2	50	50	1	1
Note: Specialty Retail Saturday Peak Hour Trip Generation Rate estimated as 10\% of Saturday whole day rate.			Total Trips:					54	56
			10\% Pass-by Adjustment:					(5)	(6)
			TOTAL New Trips:					49	50

Trip Generation Table - Alternate Development
(All trips generated using ITE's Trip Generation Manual, $9^{\text {th }}$ ed.)

Hampton, Lenzini, \& Renwick, Inc., Elgin, IL
HLR Project: 16.0220.350 Analyst: HLR

							Analyst. HLR		
AM Peak Hour	Land Use Type(ITE Code) ITE Land Use	Trip Generation Rate	Development Units	Number of Units, X	Total Trips, T	Directional Distribution		Trips	
Parcel						Entering \%	Exiting \%	Entering	Exiting
Prairie Centre Site	(820) Shopping Center	$\operatorname{Ln}(\mathrm{T})=0.61 \mathrm{Ln}(\mathrm{X})+2.24$	1000 SF	626.479	477	62	38	296	181
			Total Trips:					296	181
			20\%			Pass-by Adjustment:		(59)	(36)
			TOTAL New Trips:					237	145

APPENDIX N

ITE Trip Generation Handbook
Chapter 7
Multi-use Development

CHAPTER 7

Multi-Use Development

7.1 Background

A basic premise behind the data presented in Trip Generation is that they were collected at single-use, free-standing sites. However, the development of mixed-use or multi-use sites is increasingly popular. While the trip generation rates for individual uses on such sites may be the same or similar to what they are for free-standing sites, there is potential for interaction among those uses within the multi-use site, particularly where the trip can be made by walking. As a result, the total generation of vehicle trips entering and exiting the multi-use site may be reduced from simply a sum of the individual, discrete trips generated by each land use.

A common example of this internal trip-making occurs at a multi-use development containing offices and a shopping/service area. Some of the trips made by office workers to shops, to restaurants, or to banks may occur on site. These types of trips are defined as internal to (i.e., "captured" within) the multi-use site.

7.2 What Is a MultiUse Development?

For purposes of this handbook, a mutti-use development is typically a single real-estate project tbat consists of two or more ITE land use classifications between which trips can be made without using the off-site road system. Because of the nature of these land uses, the
trip-making characteristics are interrelated, and some trips are made among the on-site uses. This capture of trips internal to the site has the net effect of reducing vehicle trip generation between the overall development site and the external street system (compared to the total number of trips generated by comparable, stand-alone sites).

Multi-use developments are commonly found ranging in size from 100,000 square feet to 2 million square feet. The data presented in this chapter correspond to multiuse developments in this size range. The recommended procedures for estimating trip generation at multiuse developments are likely applicable at even larger sites, but the analyst is encouraged to collect additional data.

A key characteristic of a multi-use development is that trips among the various land uses can be made on site and these internal trips are not made on the major street system. In some multi-use developments, these internal trips can be made either by walking or by vehicle entirely on internal pathways or internal roadways without using streets external to the site.

An internal capture rate can generally be defined as a percentage reduction that can be applied to the trip generation estimates for individual land uses to account for trips internal to the site. It is important to note that these reductions are applied externally to the site (i.e., at entrances, at adjacent intersections,

Multi-Use Devefopment
typically planned as a single real-estate project,

- typically between 100,000 and 2 million square feet in size,
- contains two or more land uses,
- some trips are between onsite land uses, and
- trips between land uses do not travel on major street system.

Not

- a central business district,
- a suburban activity center, or
- an existing ITE land use classification with potential for a mix of land uses, such as
- a shopping center,
- an office park with retail,
- an office building with retail, or
- a hotel with limited retall and restaurant space.
and on adjacent roadways). The trip reduction for internally captured trips is separate from the reduction for pass-by trips. These are two distinct phenomena, and both could be applicable for a proposed development. The internal trips, if present, should be subtracted out before pass-by trip reductions are applied (refer to chapter 5 for a complete discussion of pass-by trip estimation).

7.3 What Is Not a Multi-Use Development?

In literal terms, a multi-use development could mean any combination of different land use types within a defined, congruous area. But that definition would encompass a wide range of potential applications, many of which are not intended to be the focus of this chapter.

A traditional downtown or central business district (CBD) is not considered a multi-use development for purposes of this handbook. Downtown areas typically have a mixture of diverse employment, retail, residential, commercial, recreation, and hotel uses. Extensive pedestrian interaction occurs because of the scale of the downtown area, the ease of access, and the proximity of the various uses. Automobile occupancy, particularly during peak commuting hours, is usually higher in the CBD than in the outlying areas. Some downtowns have excellent transit service. For these reasons, trip generation characteristics in a downtown environment are different from those found in outlying or suburban areas. The focus of the data presented throughout Trip Generation is on sites in suburban settings with limited or no transit service and with free parking.
Accordingly, trip generation characteristics in this cbapter, and specifically in the case of capture rates at multi-use developments, are directly applicable only to sites outside the traditional downtown. The potential effects of transit service and on site parking fees are discussed in appendix B.

A shopping center could also be considered a multi-use development. However, because data have been collected directly for them, shopping centers are considered in Trip Generation as a single land use. The associated trip generation rates and equations given in Trip Generation reflect the "multi-use" nature of the development because of the way shopping center data have been collected. Accordingly, internal capture rates are not applicable and sbould not be used to forecast trips for shopping centers if using Land Use Code 820 statistics and data. However, if the shopping center is planned to have out-parcel development of a significantly different land use classification or a very large percentage of overall GLA, the site could be considered a multi-use development for the purpose of estimating site trip generation.

Likewise, a subdivision or planned unit development containing general office buildings and support services such as banks, restaurants, and service stations arranged in a park- or campus-like atmosphere should be considered as an office park (Land Use Code 750), not as a multi-use development. Similarly, office buildings with support retail or restaurant facilities contained inside the building should be treated as general office buildings (Land Use Code 710) because the trip generation rates and equations already reflect such support uses. A hotel with an on-site restaurant and small retail falls within Land Use Code 310 and should not be treated as a multi-use development.

> Methodology for Estimating Trip Generation at MultiUse Sites

Internally captured trips can be a significant component in the travel patterns at multi-use developments. However, more studies are needed to thoroughly quantify this phenomenon. Section 7.5 presents a recommended procedure for estimating internal capture rates (and a worksheet for organizing and documenting the analysis assumptions used in the estimation of the internal capture rates) for multi-use development sites.

The internal trip-making characteristics of multi-use development sites are directly related to the mix of onsite land uses (which are typically a combination of residential, office, shopping/retail, restaurant, entertainment, and hotel/motel). When combined within a single mixed-use development, these land uses tend to interact, and thus to attract a portion of each other's trip generation.

The recommended methodology for estimating internal capture rates and trip generation at multi-use sites is based on two fundamental assumptions. First, the proportions of trips between interacting land use types (which will be satisfied internally by pairs of land uses) are assumed to be relatively stable. Second, if sufficient data were available, these internal capture percentages could be predicted with adequate confidence. The need for additional data collection at multi-use developments is described in section 7.7.

As should be expected, the observed internal capture rates for multi-use developments vary by time of day, by the site's mix of land uses, and by the size of the development.

Several premises frame the recommended methodology. An example to illustrate their application is presented in the highlighted text to the side. Key to the success of this methodology in replicating internal capture patterns at multi-use sites is its iterative, balancing steps that constrain internal trip-making levels to what are realistic given the mix of land uses.

> Illustration of Methodology Overview
> Assume a mult-use development with a mix of office, retail, and residential uses. Assume that the office building generates 500 exiting trips during the evening peak hour (based on factors presented in Thip Generation).

Based on surveys at other multi-use developments for illustration purposes), it is estimated that the 500 peak hour trips could go to the following destinations: 5 trips to another office building within the development, 115 trips to a retail site within the development, 10 trips to residential units on-site, and 370 to external sites (as illustrated in figure 7.1a).

What if there are no on-site residential units? The number of trips from the office to an internal residential destination changes to zero and the number of trips to external destinations becomes 380 (i.e,, the total trips from the office building remains constant at 500).

What if there are a large number of on-site residences? Assume the residential uses generate 1,000 entering trips during the evening peak hour. As illustrated in figure 7.16, the trips are assumed to originate as follows: $\mathbf{2 0}$ trips from an on-site office building, 310 trips from on-site retail, no trips from another on-site residential component, and 670 trips from external origins.

With the larger number of residences, as many as 20 trips could come from on-site office buildings. But the actual on-site office buildings generate only 10 trips to the on-site residential land use. So, 10 trips would be expected from on-site office to on-site residential in figure 7.1c. The key assumption is that the "balanced" number of internal trips will match the controlling (f.e., lower) value.

Figure 7.1 Illustration of Internal Trip Balancing for a Multi-Use Development

DISTRIBUTION OF POTENTIAL DESTINATIONS OF TRIPS FROM OFFICE USE

b. DISTRIBUTION OF POTENTIAL ORIGINS OF TRIPS TO RESIDENTIAL USE

c. BALANCED ${ }^{1}$ DISTRIBUTION OF ORIGINS OF TRIPS TO RESIDENTIAL USE

${ }^{1}$ Only the office-to-residential values have been "balanced." Each other pair of land uses would likewise need to be balanced.

Premise 1: The distribution of trip purposes among motorists entering or exiting a development site is relatively stable. The distribution of destination land uses is likewise assumed to be relatively stable. For example, the destinations of trips from an office building are distributed among the many potential destinations (e.g., retail, residential, other office) in roughly the same pattern whether the office is stand-alone or in a multi-use development.

Premise 2: The converse of Premise 1 is also true, that the distribution of origins for trips to a particular land use is relatively stable.

Premise 3: The number of trips from a land use within a multi-use development to another land use within the same multi-use development (i.e., an internal trip) is a function of the size of the "receiving" land use and the number of trips it attracts as well as the size of
the "originating" land use and the number of trips it sends. The number of trips between a particular pair of internal land uses is limited to the smaller of these two values.

APPENDIX O

Internal Capture Diagram

	Net External Trips for Multi-use Development			
	Land Use A	Land Use B	Land Use C	Total
Enter	193	78	249	520
Exit	103	97	181	381
Total	296	175	430	901

APPENDIX P

Traffic Counts

Weekday AM, Weekday PM, \& Saturday Peak Hours

1. IL Route 38 \& Randall Road
2. IL Route 38 \& Jewel Driveway
3. IL Route 38 \& West Mall Entrance
4. IL Route 38 \& East Mall Entrance/Vanderbilt Drive
5. IL Route 38 \& $14^{\text {th }}$ Street/Bricher Road
6. Randall Road \& Prairie Street
7. Prairie Street \& Jewel Driveway
8. Prairie Street \& West Mall Entrance
9. Prairie Street \& East Mall Entrance
10. Prairie Street \& Covington Court/Wessel Court
11. Prairie Street \& 16th Street
12. Prairie Street \& 14th Street
13. Prairie Street \& 7th Street
14. Prairie Street \& $3^{\text {rd }}$ Street
15. $14^{\text {th }}$ Street $\&$ Vanderbilt Drive
16. $14^{\text {th }}$ Street \& Covington Court/Horne Street

APPENDIX Q

Traffic Signal Warrant Analysis Reports

2016 Existing Traffic, 2026 Base Traffic, \& 2026 Total Traffic

1. Prairie Street \& 14th Street
a. 2016 Existing Traffic
b. 2026 Base Traffic
c. 2026 Total Traffic
2. Prairie Street \& 7th Street
a. 2016 Existing Traffic
b. 2026 Base Traffic
c. 2026 Total Traffic
3. Prairie Street \& $3^{\text {rd }}$ Street
a. 2016 Existing Traffic
b. 2026 Base Traffic
c. 2026 Total Traffic

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 14th Street
2016 Existing Traffic
Municipality: City of St. Charles

Speed limit of major route: 30

Number of lanes for major approach: 1

Isolated Community with population <10,000? No
Number of lanes for minor approach: 1

SRA: No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 14th Street

Municipality: City of St. Charles
Speed limit of major route:

Number of lanes for major approach: 1

2026 Base Traffic

Isolated Community with population $<10,000$? No

Number of lanes for minor approach: 1

SRA: No

Warrant Number	Requirement Satisfied?
Warrant 1 Condition A	
Minimum Vehicular Volume	
Warrant 1 Condition B	
Interruption of Continous Traffic	

Warrant 1 Combo	
Combination of Condition A and Condition B	Yeso
Warrant 2	Not Evaluated

Four Hour Volume

Warrant 3 Peak Hour	Yes No
Warrant 4 Pedestrian Volume	Yes No
Warrant 5 School Crossing	Yes No
Warrant 6 Coordinated Signal System	Yes No
Warrant 7 Crash Experience	Not Evaluated
Total \# of crashes: Number of correctable crashes Less restrictive remedies tried? Volume requirements met?	
Warrant 8 Roadway Network	Yes No
Warrant 9 Grade Crossing	Yes NO

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 14th Street

Municipality: City of St. Charles

Speed limit of major route:

Number of lanes for major approach: 1

2026 Total Traffic

Isolated Community with population $<10,000$? No

Number of lanes for minor approach: 1

SRA: No

Warrant Number	Requirement Satisfied?
Warrant 1 Condition A Minimum Vehicular Volume	
Warrant 1 Condition B Interruption of Continous Traffic	$\mathrm{Yes} \mathrm{No}$
Warrant 1 Combo Combination of Condition A and Condition B	Yes No
Warrant 2 Four Hour Volume	Not Evaluated
Warrant 3 Peak Hour	Yes No
Warrant 4 Pedestrian Volume	Yes No
Warrant 5 School Crossing	Yes No
Warrant 6 Coordinated Signal System	$\mathrm{Yes} \text { No }$
Warrant 7 Crash Experience	Not Evaluated
Total \# of crashes: Number of correctable crashes: Less restrictive remedies tried Volume requirements met?	
Warrant 8 Roadway Network	Yes No
Warrant 9 Grade Crossing	Yes No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 7th Street
2016 Existing Traffic
Municipality: City of St. Charles

Speed limit of major route: 30

Number of lanes for major approach: 1

Isolated Community with population <10,000? No
Number of lanes for minor approach: 1

SRA: No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 7th Street

Municipality: City of St. Charles
Speed limit of major route:

Number of lanes for major approach: 1

2026 Base Traffic

Isolated Community with population $<10,000$? No

Number of lanes for minor approach: 1

SRA: No

Warrant Number	Requirement Satisfied?
Warrant 1 Condition A Minimum Vehicular Volume	Yes No
Warrant 1 Condition B Interruption of Continous Traffic	Yes No
Warrant 1 Combo Combination of Condition A and Condition B	Yes No
Warrant 2 Four Hour Volume	Not Evaluated
Warrant 3 Peak Hour	Yes No
Warrant 4	Yes No
Warrant 5 School Crossing	Yes No
Warrant 6 Coordinated Signal System	$\mathrm{Yes} \mathrm{No}$
Warrant 7 Crash Experience	Not Evaluated
Total \# of crashes: Number of correctable crashes Less restrictive remedies tried Volume requirements met?	
Warrant 8 Roadway Network	Yes No
Warrant 9 Grade Crossing	Yes No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 7th Street

Municipality: City of St. Charles

Speed limit of major route:
Number of lanes for major approach: 1

2026 Total Traffic

Isolated Community with population $<10,000$? No

Number of lanes for minor approach: 1

SRA: No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 3rd Street

Municipality: City of St. Charles

30

Number of lanes for major approach: 1

2016 Existing Traffic

Number of lanes for minor approach: 1
SRA: No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 3rd Street
2026 Base Traffic

Municipality: City of St. Charles

Speed limit of major route: 30

Number of lanes for major approach: 1

Isolated Community with population $<10,000$? No

Number of lanes for minor approach: 1

SRA: No

TRAFFIC SIGNAL WARRANT REVIEW SHEET

Intersection: Prairie Street and 3rd Street

Municipality: City of St. Charles
Speed limit of major route:
Number of lanes for major approach: 1

2026 Total Traffic

Isolated Community with population $<10,000$? No
Number of lanes for minor approach: 1

SRA: No

Hour	Veh. per hr. on major street (total of both approaches)	Veh. per hr. on higher volume minor street approach (one direction only)	Check any hours that meet the following warrants					
			$\begin{array}{\|c\|} \hline \text { Warrant } 1 \\ \text { Condition } \\ \text { A } \end{array}$	$\begin{array}{\|c} \hline \text { Warrant 1 } \\ \text { Condition } \\ \text { B } \end{array}$	Warrant 1 Combo	Warrant 2	Warrant 3	Warrant 4
7:00 AM	869	315	X	X	X	X	X	
\downarrow								
55% of DHV	584	220	X					
\downarrow								
5:00 PM	1062	400	X	X	X	X	X	

Warrant 1 Condition B
Yes No
Interruption of Continous
Traffic
Warrant 1 Combo

Combination of Condition

A and Condition B
Warrant 2
Not Evaluated
Four Hour Volume

Warrant 3 Peak Hour	Yes No
Warrant 4 Pedestrian Volume	$\mathrm{Yes} \mathrm{No}$
Warrant 5 School Crossing	Yes No
Warrant 6 Coordinated Signal System	Yes No
Warrant 7 Crash Experience	Not Evaluated
Total \# of crashes: Number of correctable crashes: Less restrictive remedies tried? Volume requirements met?	
Warrant 8 Roadway Network	Yes No
Warrant 9 Grade Crossing	Yes ${ }^{\text {No }}$

[^0]: Copyright © 2016 University of Florida. All Rights Reserved.

[^1]: Prairie Centre 7:15 am 4/12/2016 2026 Projected Traffic
 Timing Plan: AM

[^2]: Prairie Centre 11：15 am 4／16／2016 2026 Total Traffic with Randall Widening Timing Plan：Sat

[^3]: Actual Data Points
 Average Rate

